File size: 1,128 Bytes
530035c 4bdd755 530035c 4bdd755 530035c 4bdd755 530035c 4bdd755 530035c 4bdd755 530035c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
language: es
tags:
- biomedical
- clinical
- spanish
- XLM_R_Galen
license: mit
datasets:
- "ehealth_kd"
metrics:
- f1
model-index:
- name: IIC/XLM_R_Galen-ehealth_kd
results:
- task:
type: token-classification
dataset:
name: eHealth-KD
type: ehealth_kd
split: test
metrics:
- name: f1
type: f1
value: 0.83
pipeline_tag: token-classification
---
# XLM_R_Galen-ehealth_kd
This model is a finetuned version of XLM_R_Galen for the eHealth-KD dataset used in a benchmark in the paper TODO. The model has a F1 of 0.83
Please refer to the original publication for more information TODO LINK
## Parameters used
| parameter | Value |
|-------------------------|:-----:|
| batch size | 32 |
| learning rate | 4e-05 |
| classifier dropout | 0.2 |
| warmup ratio | 0 |
| warmup steps | 0 |
| weight decay | 0 |
| optimizer | AdamW |
| epochs | 10 |
| early stopping patience | 3 |
## BibTeX entry and citation info
```bibtex
TODO
```
|