File size: 6,405 Bytes
0ebc9aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

import argparse
import json
import logging
import os
import re

import pandas as pd
import transformers  # noqa: F401
from transformers import AutoConfig, AutoTokenizer, BloomForCausalLM, pipeline, set_seed


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--path",
        type=str,
        help="Directory containing trained actor model"
    )
    parser.add_argument(
        "--max_new_tokens",
        type=int,
        default=512,
        help="Maximum new tokens to generate per response",
    )
    parser.add_argument(
        "--in_csv",
        type=str,
        help="Path to the input csv file",
    )
    parser.add_argument(
        "--out_csv",
        type=str,
        help="Path to the output csv file",
    )
    args = parser.parse_args()
    return args


def get_generator(path):
    # if os.path.exists(path):
    #     # Locally tokenizer loading has some issue, so we need to force download
    #     model_json = os.path.join(path, "config.json")
    #     if os.path.exists(model_json):
    #         model_json_file = json.load(open(model_json))
    #         model_name = model_json_file["_name_or_path"]
    #         tokenizer = AutoTokenizer.from_pretrained(model_name,
    #                                                   fast_tokenizer=True)
    # else:
    #     tokenizer = AutoTokenizer.from_pretrained(path, fast_tokenizer=True)

    tokenizer = AutoTokenizer.from_pretrained(path, fast_tokenizer=True)

    tokenizer.pad_token = tokenizer.eos_token

    model_config = AutoConfig.from_pretrained(path)
    model = BloomForCausalLM.from_pretrained(path,
                                             from_tf=bool(".ckpt" in path),
                                             config=model_config).half()

    model.config.end_token_id = tokenizer.eos_token_id
    model.config.pad_token_id = model.config.eos_token_id
    model.resize_token_embeddings(len(tokenizer))
    generator = pipeline("text-generation",
                         model=model,
                         tokenizer=tokenizer,
                         device="cuda:0")
    return generator


def get_user_input(user_input):
    tmp = input("Enter input (type 'quit' to exit, 'clear' to clean memory): ")
    new_inputs = f"Human: {tmp}\n Assistant: "
    user_input += f" {new_inputs}"
    return user_input, tmp == "quit", tmp == "clear"


def get_model_response(generator, user_input, max_new_tokens):
    response = generator(user_input, max_new_tokens=max_new_tokens)
    return response


def process_response(response, num_rounds):
    output = str(response[0]["generated_text"])
    output = output.replace("<|endoftext|></s>", "")
    all_positions = [m.start() for m in re.finditer("Human: ", output)]
    place_of_second_q = -1
    if len(all_positions) > num_rounds:
        place_of_second_q = all_positions[num_rounds]
    if place_of_second_q != -1:
        output = output[0:place_of_second_q]
    return output


def main(args):
    generator = get_generator(args.path)
    set_seed(42)

    def process_response_ch(response):
        output = str(response[0]["generated_text"])
        output = output[output.find("生成一份对应的诊断意见:") + 12:output.find("<|endoftext|>")].replace(" ", "")
        end = output.find("生成一份对应的诊断意见:")
        if end != -1:
            output = output[:end]
        return output

    if args.in_csv is not None:
        csv = pd.read_csv(args.in_csv, encoding="gbk")
        gen = []
        n_instr = 0
        for instr in csv["INSTRUCTION"]:
            n_instr += 1
            print("-" * 20 + f" Instruction {n_instr} " + "-" * 20)
            user_input = f"根据下面一段影像描述:{instr}\n 生成一份对应的诊断意见:"
            response = get_model_response(generator, user_input,
                                          args.max_new_tokens)
            output = process_response_ch(response)
            gen.append(output)
            print(user_input + "\n" + output + "\n")
        csv["GENERATED"] = gen
        csv.to_csv(args.out_csv, encoding="gbk", index=False)
    else:
        while True:
            tmp = input("Enter input (type 'quit' to exit): ")
            if tmp == "quit":
                break
            if tmp == "clear":
                print("-" * 40 + "\n(Context preservation is currently disabled. 'clear' takes no effect.)\n")
                continue
            user_input = f"根据下面一段影像描述:{tmp}\n 生成一份对应的诊断意见:"
            response = get_model_response(generator, user_input,
                                          args.max_new_tokens)
            output = process_response_ch(response)
            print("-" * 40 + "\n" + user_input + "\n" + output + "\n")

    # user_input = ""
    # num_rounds = 0
    # while True:
    #     num_rounds += 1
    #     user_input, quit, clear = get_user_input(user_input)

    #     if quit:
    #         break
    #     if clear:
    #         user_input, num_rounds = "", 0
    #         continue

    #     response = get_model_response(generator, user_input,
    #                                   args.max_new_tokens)
    #     output = process_response(response, num_rounds)

    #     print("-" * 30 + f" Round {num_rounds} " + "-" * 30)
    #     print(f"{output}")
    #     user_input = f"{output}\n\n"


if __name__ == "__main__":
    # Silence warnings about `max_new_tokens` and `max_length` being set
    logging.getLogger("transformers").setLevel(logging.ERROR)

    args = parse_args()
    main(args)

# Example:
"""
 Human: what is internet explorer?
 Assistant:
Internet Explorer is an internet browser developed by Microsoft. It is primarily used for browsing the web, but can also be used to run some applications. Internet Explorer is often considered the best and most popular internet browser currently available, though there are many other options available.
 Human: what is edge?
 Assistant:
 Edge is a newer version of the Microsoft internet browser, developed by Microsoft. It is focused on improving performance and security, and offers a more modern user interface. Edge is currently the most popular internet browser on the market, and is also used heavily by Microsoft employees.
"""