# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team import argparse import json import logging import os import re import pandas as pd import transformers # noqa: F401 from transformers import AutoConfig, AutoTokenizer, BloomForCausalLM, pipeline, set_seed def parse_args(): parser = argparse.ArgumentParser() parser.add_argument( "--path", type=str, help="Directory containing trained actor model" ) parser.add_argument( "--max_new_tokens", type=int, default=512, help="Maximum new tokens to generate per response", ) parser.add_argument( "--in_csv", type=str, help="Path to the input csv file", ) parser.add_argument( "--out_csv", type=str, help="Path to the output csv file", ) args = parser.parse_args() return args def get_generator(path): # if os.path.exists(path): # # Locally tokenizer loading has some issue, so we need to force download # model_json = os.path.join(path, "config.json") # if os.path.exists(model_json): # model_json_file = json.load(open(model_json)) # model_name = model_json_file["_name_or_path"] # tokenizer = AutoTokenizer.from_pretrained(model_name, # fast_tokenizer=True) # else: # tokenizer = AutoTokenizer.from_pretrained(path, fast_tokenizer=True) tokenizer = AutoTokenizer.from_pretrained(path, fast_tokenizer=True) tokenizer.pad_token = tokenizer.eos_token model_config = AutoConfig.from_pretrained(path) model = BloomForCausalLM.from_pretrained(path, from_tf=bool(".ckpt" in path), config=model_config).half() model.config.end_token_id = tokenizer.eos_token_id model.config.pad_token_id = model.config.eos_token_id model.resize_token_embeddings(len(tokenizer)) generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device="cuda:0") return generator def get_user_input(user_input): tmp = input("Enter input (type 'quit' to exit, 'clear' to clean memory): ") new_inputs = f"Human: {tmp}\n Assistant: " user_input += f" {new_inputs}" return user_input, tmp == "quit", tmp == "clear" def get_model_response(generator, user_input, max_new_tokens): response = generator(user_input, max_new_tokens=max_new_tokens) return response def process_response(response, num_rounds): output = str(response[0]["generated_text"]) output = output.replace("<|endoftext|>", "") all_positions = [m.start() for m in re.finditer("Human: ", output)] place_of_second_q = -1 if len(all_positions) > num_rounds: place_of_second_q = all_positions[num_rounds] if place_of_second_q != -1: output = output[0:place_of_second_q] return output def main(args): generator = get_generator(args.path) set_seed(42) def process_response_ch(response): output = str(response[0]["generated_text"]) output = output[output.find("生成一份对应的诊断意见:") + 12:output.find("<|endoftext|>")].replace(" ", "") end = output.find("生成一份对应的诊断意见:") if end != -1: output = output[:end] return output if args.in_csv is not None: csv = pd.read_csv(args.in_csv, encoding="gbk") gen = [] n_instr = 0 for instr in csv["INSTRUCTION"]: n_instr += 1 print("-" * 20 + f" Instruction {n_instr} " + "-" * 20) user_input = f"根据下面一段影像描述:{instr}\n 生成一份对应的诊断意见:" response = get_model_response(generator, user_input, args.max_new_tokens) output = process_response_ch(response) gen.append(output) print(user_input + "\n" + output + "\n") csv["GENERATED"] = gen csv.to_csv(args.out_csv, encoding="gbk", index=False) else: while True: tmp = input("Enter input (type 'quit' to exit): ") if tmp == "quit": break if tmp == "clear": print("-" * 40 + "\n(Context preservation is currently disabled. 'clear' takes no effect.)\n") continue user_input = f"根据下面一段影像描述:{tmp}\n 生成一份对应的诊断意见:" response = get_model_response(generator, user_input, args.max_new_tokens) output = process_response_ch(response) print("-" * 40 + "\n" + user_input + "\n" + output + "\n") # user_input = "" # num_rounds = 0 # while True: # num_rounds += 1 # user_input, quit, clear = get_user_input(user_input) # if quit: # break # if clear: # user_input, num_rounds = "", 0 # continue # response = get_model_response(generator, user_input, # args.max_new_tokens) # output = process_response(response, num_rounds) # print("-" * 30 + f" Round {num_rounds} " + "-" * 30) # print(f"{output}") # user_input = f"{output}\n\n" if __name__ == "__main__": # Silence warnings about `max_new_tokens` and `max_length` being set logging.getLogger("transformers").setLevel(logging.ERROR) args = parse_args() main(args) # Example: """ Human: what is internet explorer? Assistant: Internet Explorer is an internet browser developed by Microsoft. It is primarily used for browsing the web, but can also be used to run some applications. Internet Explorer is often considered the best and most popular internet browser currently available, though there are many other options available. Human: what is edge? Assistant: Edge is a newer version of the Microsoft internet browser, developed by Microsoft. It is focused on improving performance and security, and offers a more modern user interface. Edge is currently the most popular internet browser on the market, and is also used heavily by Microsoft employees. """