File size: 40,477 Bytes
367577f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
# MIT License
# Copyright (c) 2025 IPEC at Shanghai AI Laboratory
# Permission is hereby granted, free of charge, to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND.
# Based on code licensed under the Apache License, Version 2.0 by Google Inc. and HuggingFace Inc. team (Copyright 2024).
# coding=utf-8

"""PyTorch PaliGemmamodel."""

from dataclasses import dataclass
from typing import List, Optional, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import nn
from torch.linalg import inv
import torchvision.transforms.functional as F

import os
from transformers.cache_utils import Cache, HybridCache, StaticCache
from transformers.generation import GenerationMixin
from transformers.modeling_utils import PreTrainedModel, PretrainedConfig
from transformers.utils import (
    ModelOutput,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    is_flash_attn_2_available,
    logging,
    replace_return_docstrings,
)
from .configuration_spatialvla import SpatialVLAConfig
from .modeling_ego3d import Ego3DPositionEmbeddingMLP, process_zoe
from .modeling_gemma2 import Gemma2ForCausalLM

if is_flash_attn_2_available():
    from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input  # noqa

from transformers import AutoModel, AutoModelForCausalLM, ZoeDepthForDepthEstimation


logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "PaliGemmaConfig"

# constant
SIGLIP_MEAN, SIGLIP_STD = (0.5, 0.5, 0.5), (0.5, 0.5, 0.5)

# Adapted from transformers.models.llama.modeling_llama.LlamaModel._prepare_4d_causal_attention_mask_with_cache_position
# But Paligemma has no causal mask on prefix
def _prepare_4d_causal_attention_mask_with_cache_position(
    attention_mask: torch.Tensor,
    sequence_length: int,
    target_length: int,
    dtype: torch.dtype,
    device: torch.device,
    min_dtype: float,
    cache_position: torch.Tensor,
    batch_size: int,
    is_training: bool = False,
    token_type_ids: torch.Tensor = None,
    **kwargs,
):
    """
    Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
    `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.

    Args:
        attention_mask (`torch.Tensor`):
            A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
        sequence_length (`int`):
            The sequence length being processed.
        target_length (`int`):
            The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
        dtype (`torch.dtype`):
            The dtype to use for the 4D attention mask.
        device (`torch.device`):
            The device to plcae the 4D attention mask on.
        min_dtype (`float`):
            The minimum value representable with the dtype `dtype`.
        cache_position (`torch.Tensor`):
            Indices depicting the position of the input sequence tokens in the sequence.
        batch_size (`torch.Tensor`):
            Batch size.
        is_training (`bool`):
            Whether the model is in training mode or in inference. The condition is checked by presence/absence of `token_type_ids/labels`
    """
    if attention_mask is not None and attention_mask.dim() == 4:
        # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
        causal_mask = attention_mask
    else:
        causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
        # Causal diagonal mask only if training, otherwise attend to the whole prefix. Training-specific attn for prefix is handled below
        if sequence_length != 1:
            if is_training:
                causal_mask = torch.triu(causal_mask, diagonal=1)
            else:
                causal_mask[:, :sequence_length] = 0.0

        causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
        causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
        if attention_mask is not None:
            causal_mask = causal_mask.clone()  # copy to contiguous memory for in-place edit
            mask_length = attention_mask.shape[-1]
            padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(causal_mask.device)
            padding_mask = padding_mask == 0
            causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
                padding_mask, min_dtype
            )
            # we are training thus we need to create a full mask on the image + prefix but causal on suffix
            if is_training:
                causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
                    token_type_ids[:, None, None, :].to(causal_mask.device) == 0, 0
                )
    return causal_mask


@dataclass
class SpatialVLACausalLMOutputWithPast(ModelOutput):
    """
    Base class for PaliGemmacausal language model (or autoregressive) outputs.

    Args:
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
            Language modeling loss (for next-token prediction).
        logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.text_config.vocab_size)`):
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`)

            Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
            `past_key_values` input) to speed up sequential decoding.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
        image_hidden_states (`torch.FloatTensor`, *optional*):
            A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
            image_hidden_states of the model produced by the vision encoder after projecting last hidden state.
    """

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    image_hidden_states: Optional[torch.FloatTensor] = None


class SpatialVLAMultiModalProjector(nn.Module):
    def __init__(self, config: SpatialVLAConfig):
        super().__init__()
        self.linear = nn.Linear(config.vision_config.hidden_size, config.vision_config.projection_dim, bias=True)

    def forward(self, image_features):
        hidden_states = self.linear(image_features)

        return hidden_states


PALIGEMMA_START_DOCSTRING = r"""
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`PaliGemmaConfig`] or [`PaliGemmaVisionConfig`]):
            Model configuration class with all the parameters of the model. Initializing with a config file does not
            load the weights associated with the model, only the configuration. Check out the
            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""


@add_start_docstrings(
    "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
    PALIGEMMA_START_DOCSTRING,
)
class SpatialVLAPreTrainedModel(PreTrainedModel):
    config_class = SpatialVLAConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["SpatialVLAMultiModalProjector", "ZoeDepthForDepthEstimation", "Ego3DPositionEmbeddingMLP"]
    _skip_keys_device_placement = "past_key_values"
    _supports_cache_class = True
    _supports_quantized_cache = True
    _supports_static_cache = True
    _supports_cache_class = True
    _supports_flash_attn_2 = True
    _supports_sdpa = True

    def _init_weights(self, module):
        # important: this ported version of PaliGemmaisn't meant for training from scratch - only
        # inference and fine-tuning
        std = (
            self.config.initializer_range
            if hasattr(self.config, "initializer_range")
            else self.config.text_config.initializer_range
        )

        if hasattr(module, "class_embedding"):
            module.class_embedding.data.normal_(mean=0.0, std=std)

        if isinstance(module, (nn.Linear, nn.Conv2d)):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()


PALIGEMMA_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
            it.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)):
            The tensors corresponding to the input images. Pixel values can be obtained using
            [`AutoImageProcessor`]. See [`SiglipImageProcessor.__call__`] for details ([]`PaliGemmaProcessor`] uses
            [`SiglipImageProcessor`] for processing images).
        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
            `past_key_values`).

            If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
            and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
            information on the default strategy.

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.
        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
            `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.

            Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
            blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.

            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
            `decoder_input_ids` of shape `(batch_size, sequence_length)`.
        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
            model's internal embedding lookup matrix.
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
            Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
            this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
            the complete sequence length.
"""


@add_start_docstrings(
    """The PALIGEMMA model which consists of a vision backbone and a language model.""",
    PALIGEMMA_START_DOCSTRING,
)
class SpatialVLAForConditionalGeneration(SpatialVLAPreTrainedModel, GenerationMixin):
    def __init__(self, config: SpatialVLAConfig, vision_model=None, vision_zoe_model=None, projector_model=None, language_model=None):
        super().__init__(config)
        # vision model
        self.vision_tower = vision_model or AutoModel.from_config(config=config.vision_config)
        # projector
        self.multi_modal_projector = projector_model or SpatialVLAMultiModalProjector(config)
        # language model
        self.vocab_size = config.text_config.vocab_size
        if language_model is None:
            language_model = Gemma2ForCausalLM(config=config.text_config) if config.text_config.model_type == "gemma2" else AutoModelForCausalLM.from_config(config=config.text_config)
        # set tile key
        if language_model._tied_weights_keys is not None:
            self._tied_weights_keys = [f"language_model.{k}" for k in language_model._tied_weights_keys]
        self.language_model = language_model

        if config.use_vision_zoe:
            # zoe model
            self.vision_zoe_model = vision_zoe_model or ZoeDepthForDepthEstimation(config.vision_zoe_config)
            self.position_embedding_3d = Ego3DPositionEmbeddingMLP(
                config.ego3d_patch_reso**2 * 3, num_pos_feats=config.vision_config.hidden_size, n_freqs=config.n_freqs
            )
            # register buffer
            patch_size, reso, image_size = config.vision_config.patch_size, config.ego3d_patch_reso, config.vision_config.image_size
            y, x = torch.meshgrid(torch.arange(0, image_size, patch_size // reso), torch.arange(0, image_size, patch_size // reso), indexing="ij")  # (h//sp w//sp)
            y, x = y + patch_size / reso / 2, x + patch_size / reso / 2
            uv_h = torch.stack([x, y, torch.ones_like(x)], dim=0).reshape(3, -1)  # (3 hw)
            self.register_buffer("uv_h", uv_h, persistent=False)

        # NOTE: add shared addtional spatial token embeddings for <ACTION> <IMG>
        if config.use_spatial_token:
            self.spatial_embed_tokens = nn.Embedding(self.config.spatial_token_num, config.text_config.hidden_size)
        else:
            self.spatial_embed_tokens = None

        self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
        # self.post_init() # BUG: cause from_pretrained failed!
        # self.position_embedding_3d._reset_parameters()


    def backproject_patch(self, K: torch.Tensor, depth: torch.Tensor, patch_size=14, reso=2) -> torch.Tensor:
        """
        Backproject depth map to 3D points in camera coordinate.
        Args:
            K: camera intrinsic matrix (b 3 3)
            depth: depth map (b 1 h w)
            pixel_offset: offset to the pixel coordinate
        """
        # __import__("ipdb").set_trace()
        b, c, h, w = depth.shape
        hp, wp = h // patch_size, w // patch_size
        sub_hp = sub_wp = reso
        patch_depth = torch.nn.functional.interpolate(depth, size=(hp * reso, wp * reso), mode="area").reshape(b, c, -1)

        # import torchvision; torchvision.utils.save_image(zoe_pixel_values[0], "zoe_image.png")
        p_cam = (inv(K.float()) @ self.uv_h.float()) * patch_depth  # (b 3 3) @ (3 hw) -> (b 3 hw) * (b 1 hw) -> (b 3 hw)
        patch_p_cam = p_cam.reshape(b, 3, hp, sub_hp, wp, sub_wp).permute(0, 2, 4, 3, 5, 1).reshape(b, hp * wp, -1)
        return patch_p_cam

    # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_input_embeddings with Llava->PaliGemma
    def get_input_embeddings(self):
        return self.language_model.get_input_embeddings()

    # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_input_embeddings with Llava->PaliGemma
    def set_input_embeddings(self, value):
        self.language_model.set_input_embeddings(value)

    # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_output_embeddings with Llava->PaliGemma
    def get_output_embeddings(self):
        return self.language_model.get_output_embeddings()

    # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_output_embeddings with Llava->PaliGemma
    def set_output_embeddings(self, new_embeddings):
        self.language_model.set_output_embeddings(new_embeddings)

    # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_decoder with Llava->PaliGemma
    def set_decoder(self, decoder):
        self.language_model.set_decoder(decoder)

    # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_decoder with Llava->PaliGemma
    def get_decoder(self):
        return self.language_model.get_decoder()

    # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.tie_weights with Llava->PaliGemma
    def tie_weights(self):
        return self.language_model.tie_weights()
    
    def resize_token_embeddings(
        self,
        new_num_tokens: Optional[int] = None,
        pad_to_multiple_of: Optional[int] = None,
        mean_resizing: bool = True,
    ) -> nn.Embedding:
        # TODO: is_deepspeed_zero3_enabled gather
        print(f"resize token embeddings from {self.language_model.get_output_embeddings().weight.shape} to (*,{new_num_tokens})")
        model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of, mean_resizing)

        # update base model and current model config
        vocab_size = model_embeds.weight.shape[0]
        self.config.text_config.vocab_size = self.vocab_size = self.config._vocab_size = vocab_size
        self.tie_weights()
        return model_embeds
    
    def _update_causal_mask(
        self,
        attention_mask,
        token_type_ids,
        past_key_values,
        cache_position,
        input_ids=None,
        inputs_embeds=None,
        is_training: bool = False,
    ):
        if self.config.text_config._attn_implementation == "flash_attention_2":
            if attention_mask is not None and 0.0 in attention_mask:
                return attention_mask
            return None

        using_static_cache = isinstance(past_key_values, StaticCache)
        min_dtype = torch.finfo(self.dtype).min
        inputs_lead_dim = input_ids.shape[0] if input_ids is not None else inputs_embeds.shape[0]
        sequence_length = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
        if using_static_cache:
            target_length = past_key_values.get_max_cache_shape()
        elif isinstance(past_key_values, HybridCache):
            target_length = past_key_values.get_max_cache_shape()
        else:
            target_length = (
                attention_mask.shape[-1]
                if isinstance(attention_mask, torch.Tensor)
                else cache_position[0] + sequence_length + 1
            )

        if attention_mask is not None and attention_mask.dim() == 4:
            # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
            return attention_mask

        causal_mask = torch.full(
            (sequence_length, target_length), fill_value=min_dtype, dtype=self.dtype, device=cache_position.device
        )
        # Causal diagonal mask only if training, otherwise attend to the whole prefix. Training-specific attn for prefix is handled below
        if sequence_length != 1:
            if is_training:
                causal_mask = torch.triu(causal_mask, diagonal=1)
            else:
                causal_mask[:, :sequence_length] = 0.0

        causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
        causal_mask = causal_mask[None, None, :, :].expand(inputs_lead_dim, 1, -1, -1)
        if attention_mask is not None:
            causal_mask = causal_mask.clone()  # copy to contiguous memory for in-place edit
            mask_length = attention_mask.shape[-1]
            padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(causal_mask.device)
            padding_mask = padding_mask == 0
            causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
                padding_mask, min_dtype
            )
            # we are training thus we need to create a full mask on the image + prefix but causal on suffix
            if is_training:
                causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
                    token_type_ids[:, None, None, :].to(causal_mask.device) == 0, 0
                )
        return causal_mask

    def get_image_features(self, pixel_values: torch.FloatTensor, intrinsic: torch.FloatTensor):
        """
        Obtains image last hidden states from the vision tower and apply multimodal projection.

        Args:
            pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`)
               The tensors corresponding to the input images.
        Returns:
            image_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`).
        """
        # mintrinsic = intrinsic.reshape(-1, 3, 3)
        # siglip vision tower
        siglip_pixel_values = F.normalize(pixel_values, mean=SIGLIP_MEAN, std=SIGLIP_STD)
        image_outputs = self.vision_tower(siglip_pixel_values)

        # ego3d position encoding
        if self.config.use_vision_zoe:
            zoe_pixel_values, ph, pw = process_zoe(pixel_values, pad_mode="reflect")
            with torch.no_grad():
                pvh, pvw = pixel_values.shape[-2:]
                depth = self.vision_zoe_model(pixel_values=zoe_pixel_values).predicted_depth
                depth = torch.nn.functional.interpolate(
                    depth.unsqueeze(1),
                    size=(pvh+2*ph, pvw+2*pw),
                    mode="bicubic",
                    align_corners=True,
                )[..., ph:-ph, pw:-pw]
                # depth = torch.clamp(depth, 0., 4.0) # NOTE: we find that depth w/o clamp performs better
                xyz = self.backproject_patch(
                    intrinsic, depth, patch_size=self.config.vision_config.patch_size, reso=self.config.ego3d_patch_reso
                )  # (b, n, 3*4)
            pos_embed_3d = self.position_embedding_3d(xyz)
            selected_image_feature = image_outputs.last_hidden_state + pos_embed_3d
        else:
            selected_image_feature = image_outputs.last_hidden_state
        image_features = self.multi_modal_projector(selected_image_feature)
        image_features = image_features / (self.config.text_config.hidden_size**0.5)
        return image_features

    @add_start_docstrings_to_model_forward(PALIGEMMA_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=SpatialVLACausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        pixel_values: torch.FloatTensor = None,
        actions: Optional[torch.FloatTensor] = None,
        intrinsic: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        cache_position: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        num_logits_to_keep: int = 0,
    ) -> Union[Tuple, SpatialVLACausalLMOutputWithPast]:
        r"""
        Args:
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.text_config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.text_config.vocab_size]`.

            num_logits_to_keep (`int`, *optional*):
                Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
                `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
                token can save memory, which becomes pretty significant for long sequences or large vocabulary size.

        Returns:

        Example:

        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoProcessor, PaliGemmaForConditionalGeneration

        >>> model = PaliGemmaForConditionalGeneration.from_pretrained("google/PaliGemma-test-224px-hf")
        >>> processor = AutoProcessor.from_pretrained("google/PaliGemma-test-224px-hf")

        >>> prompt = "answer en Where is the cow standing?"
        >>> url = "https://huggingface.co/gv-hf/PaliGemma-test-224px-hf/resolve/main/cow_beach_1.png"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> inputs = processor(images=image, text=prompt,  return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(**inputs, max_length=30)
        >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "answer en Where is the cow standing?\nbeach"
        ```"""        
        # print(f"**************************************\n \
        #       input_ids {input_ids} \n \
        #       labels {labels} \n \
        #       token_type_ids {token_type_ids} \n \
        #       attention_mask {attention_mask} \n \
        #       actions {actions} \n \
        #         **************************************"
        #       )
        # print(f"model.language_model.config._attn_implementation {self.language_model.config._attn_implementation} model.config.vision_config._attn_implementation_internal {self.config.vision_config._attn_implementation_internal} \n \
        #       model.vision_tower.config._attn_implementation {self.vision_tower.config._attn_implementation} model.config.vision_config._attn_implementation_internal {self.config.vision_config._attn_implementation_internal}")
        # __import__("ipdb").set_trace()
        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError("You must specify exactly one of input_ids or inputs_embeds")

        if pixel_values is not None and inputs_embeds is not None:
            raise ValueError(
                "You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
            )

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        is_training = token_type_ids is not None and labels is not None
        
        if inputs_embeds is None:
            inputs_embeds = self.get_input_embeddings()(input_ids).clone() ## avoid checkpint grad True

        # NOTE: replace the fixed embeddings with trainable spatial embeddings
        # BUG: LoRA causes inputs_embeds requires_grad = True
        # peft: https://github.com/huggingface/peft/blob/ec92cdcc41fe1b141bfe1e0da69b38a7e601cc80/src/peft/peft_model.py#L687
        # hf: https://github.com/huggingface/transformers/blob/05260a1fc1c8571a2b421ce72b680d5f1bc3e5a4/src/transformers/modeling_utils.py#L2545
        # lora w/ prompt: https://discuss.huggingface.co/t/combine-between-lora-and-prompt-tunning/65151
        if self.config.use_spatial_token:
            spatial_selected = (input_ids >= self.config.action_token_begin_idx) & (input_ids < self.config.action_token_begin_idx + self.config.spatial_token_num)
            inputs_embeds[spatial_selected] = inputs_embeds[spatial_selected] * 0.0 + self.spatial_embed_tokens(input_ids[spatial_selected] - self.config.action_token_begin_idx)

        if cache_position is None:
            past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
            cache_position = torch.arange(
                past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
            )

        if position_ids is None:
            position_ids = cache_position.unsqueeze(0) + 1  # Paligemma positions are 1-indexed

        # Merge text and images
        if pixel_values is not None:
            image_features = self.get_image_features(pixel_values, intrinsic)

            special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1)
            special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
            if inputs_embeds[special_image_mask].numel() != image_features.numel():
                image_tokens_in_text = torch.sum(input_ids == self.config.image_token_index)
                raise ValueError(
                    f"Number of images does not match number of special image tokens in the input text. "
                    f"Got {image_tokens_in_text} image tokens in the text but {image_features.shape[0] * image_features.shape[1]} "
                    "tokens from image embeddings."
                )
            image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
            inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)

        # mask out pad-token-ids in labels for BC
        if labels is not None and self.pad_token_id in labels:
            logger.warning_once(
                "`labels` contains `pad_token_id` which will be masked with `config.ignore_index`. ",
                "You have to mask out `pad_token_id` when preparing `labels`, this behavior will be removed in v.4.46.",
            )
            labels = torch.where(input_ids == self.pad_token_id, self.config.ignore_index, labels)

        causal_mask = self._update_causal_mask(
            attention_mask, token_type_ids, past_key_values, cache_position, input_ids, inputs_embeds, is_training
        )
        outputs = self.language_model(
            attention_mask=causal_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
            num_logits_to_keep=num_logits_to_keep,
        )

        logits = outputs.logits
        loss = None
        if labels is not None:
            # Upcast to float if we need to compute the loss to avoid potential precision issues
            logits = logits.float()
            shift_logits = logits[..., :-1, :]
            shift_labels = labels[..., 1:]
            if attention_mask is not None:
                # we use the input attention mask to shift the logits and labels, because it is 2D.
                # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
                shift_attention_mask = attention_mask[:, -shift_logits.shape[1] :].to(logits.device)
                shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous()
                shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
            else:
                shift_logits = shift_logits.contiguous()
                shift_labels = shift_labels.contiguous()
            # Flatten the tokens
            loss_fct = nn.CrossEntropyLoss()

            flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
            flat_labels = shift_labels.view(-1).to(shift_logits.device)
            loss = loss_fct(flat_logits, flat_labels)
        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return SpatialVLACausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            image_hidden_states=image_features if pixel_values is not None else None,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        inputs_embeds=None,
        cache_position=None,
        position_ids=None,
        pixel_values=None,
        intrinsic=None,
        attention_mask=None,
        token_type_ids=None,
        use_cache=True,
        num_logits_to_keep=None,
        labels=None,
        **kwargs,
    ):
        # Overwritten -- custom `position_ids` and `pixel_values` handling
        model_inputs = self.language_model.prepare_inputs_for_generation(
            input_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            position_ids=position_ids,
            cache_position=cache_position,
            use_cache=use_cache,
            num_logits_to_keep=num_logits_to_keep,
            token_type_ids=token_type_ids,
            **kwargs,
        )

        # position_ids in Paligemma are 1-indexed
        if model_inputs.get("position_ids") is not None:
            model_inputs["position_ids"] += 1
        # If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
        # Otherwise we need pixel values to be passed to model. NOTE: use_cache=False needs pixel_values always
        if cache_position[0] == 0:
            model_inputs["pixel_values"] = pixel_values
        is_training = token_type_ids is not None and labels is not None
        if cache_position[0] == 0 and isinstance(past_key_values, HybridCache):
            causal_mask = self._update_causal_mask(
                attention_mask, token_type_ids, past_key_values, cache_position, input_ids, inputs_embeds, is_training
            )
            model_inputs["attention_mask"] = causal_mask
        model_inputs["intrinsic"] = intrinsic
        return model_inputs

    @torch.no_grad()
    def predict_action(
        self,
        model_inputs,
    ) -> torch.Tensor:
        model_inputs = model_inputs.to(torch.bfloat16).to(self.device)
        input_len = model_inputs["input_ids"].shape[-1]
        generation_outputs = self.generate(**model_inputs, max_new_tokens=256, do_sample=False)
        return generation_outputs[:,input_len:]

    @classmethod
    def from_pretrained(
        cls,
        pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
        *model_args,
        config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
        cache_dir: Optional[Union[str, os.PathLike]] = None,
        ignore_mismatched_sizes: bool = False,
        force_download: bool = False,
        local_files_only: bool = False,
        token: Optional[Union[str, bool]] = None,
        revision: str = "main",
        use_safetensors: Optional[bool] = None,
        weights_only: bool = True,
        **kwargs,
    ):
        model = super().from_pretrained(
            pretrained_model_name_or_path,
            *model_args,
            config=config,
            cache_dir=cache_dir,
            ignore_mismatched_sizes=ignore_mismatched_sizes,
            force_download=force_download,
            local_files_only=local_files_only,
            token=token,
            revision=revision,
            use_safetensors=use_safetensors,
            weights_only=weights_only,
            **kwargs,
        )
        # NOTE: tie the weights of the embed_tokens with lm head (donot work if un_tie_weight)
        # model.language_model.tie_weights()
        # NOTE: tie the data of spatial_embed_tokens with embed_tokens (BUG: forweight sync issue in training)
        if model.config.use_spatial_token: 
            model.language_model.model.embed_tokens.weight.data[-model.config.spatial_token_num:] = model.spatial_embed_tokens.weight.data
        return model