File size: 20,851 Bytes
367577f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
# MIT License
# Copyright (c) 2025 IPEC at Shanghai AI Laboratory
# Permission is hereby granted, free of charge, to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND.
# coding=utf-8

"""
action_tokenizer.py

Extension class; wraps base LLM/VLM tokenizer with logic to discretize and tokenize continuous robot actions.
"""
from typing import List, Union, Dict, Tuple, Optional
import numpy as np
from transformers import PreTrainedTokenizerBase
from pathlib import Path
import json
from scipy.stats import norm
import torch

ACTION_TOKEN = '<ACTION{:05d}>'

"""Spatial Tokenizer"""
class ActionTokenizer:
    def __init__(
        self,
        tokenizer: PreTrainedTokenizerBase,
        num_bins: int = 256,
        min_action: int = -1,
        max_action: int = 1,
    ):
        self._vocab_size = num_bins
        self.tokenizer = tokenizer
        self.min_action, self.max_action = min_action, max_action
        self.bin_centers = np.linspace(min_action, max_action, num_bins)

        # add special action tokens to language tokenizer
        token_list = [ACTION_TOKEN.format(i) for i in range(self._vocab_size)]
        self.token_array = np.array(token_list)
        
        num_new_tokens = self.tokenizer.add_tokens(token_list, special_tokens=True)
        print(f"Add {num_new_tokens} TRANSLATION TOKENS, tokenizer vocab size {self.tokenizer.vocab_size} / {len(tokenizer)}")

        self.action_token_begin_idx = self.token_start_idx = self.tokenizer.convert_tokens_to_ids(self.token_array[0])
        self.token_end_idx = self.tokenizer.convert_tokens_to_ids(self.token_array[-1])

    def __call__(self, action: np.ndarray) -> List[str]:
        """Discretize continuous actions to tokens.
        action: np.ndarray, (n, 7), continuous actions in Cartesian or Spherical coordinates.
        return: np.ndarray, (n, 7), tokens.
        """
        action = np.clip(action, a_min=float(self.min_action), a_max=float(self.max_action))
        ids = np.digitize(action, self.bin_centers, right=True)  # [0, 255]
        return self.token_array[ids]

    def decode_token_ids_to_actions(self, action_token_id: np.ndarray) -> np.ndarray:
        """decode token ids to continuous actions.
        action_token_id: np.ndarray, (n, 7), token ids.
        return: np.ndarray, (n, 7), continuous actions
        """
        ids = action_token_id - self.action_token_begin_idx
        ids = np.clip(ids, a_min=0, a_max=self._vocab_size - 1)
        return self.bin_centers[ids]

    @property
    def vocab_size(self) -> int:
        return self._vocab_size

"""Spatial Tokenizer"""
class TranslationTokenizer:
    def __init__(
        self,
        tokenizer: PreTrainedTokenizerBase,
        num_bins: Dict,
        bin_policy: Optional[Dict] = None,
        use_spherical: bool = True,
    ):
        self.tokenizer = tokenizer
        self.num_theta_bins = num_bins["theta_bins"]
        self.num_phi_bins = num_bins["phi_bins"]
        self.num_r_bins = num_bins["r_bins"]
        self.use_spherical = use_spherical
        
        # for indexing
        self.NP = self.num_phi_bins * self.num_r_bins

        # add special action tokens to language tokenizer
        self._vocab_size = self.num_theta_bins * self.num_phi_bins * self.num_r_bins
        token_list = [ACTION_TOKEN.format(i) for i in range(self._vocab_size)]
        self.token_array = np.array(token_list)

        num_new_tokens = self.tokenizer.add_tokens(token_list, special_tokens=True)
        print(f"Add {num_new_tokens} TRANSLATION TOKENS, tokenizer vocab size {self.tokenizer.vocab_size} / {len(tokenizer)}")

        self.token_start_idx = self.tokenizer.convert_tokens_to_ids(self.token_array[0])
        self.token_end_idx = self.tokenizer.convert_tokens_to_ids(self.token_array[-1])
        self.set_bins(bin_policy)

    def set_bins(self, bin_policy):
        self.theta_bins = np.array(bin_policy["theta_bins"])
        self.phi_bins = np.array(bin_policy["phi_bins"])
        self.r_bins = np.array(bin_policy["r_bins"])

    def cartesian_to_spherical(self, x, y, z):
        theta = np.arctan2(np.sqrt(x**2 + y**2), z)  # polar angle
        phi = np.arctan2(y, x)  # azimuthal angle
        r = np.sqrt(x**2 + y**2 + z**2)
        return theta, phi, r

    def spherical_to_cartesian(self, theta, phi, r):
        x = r * np.sin(theta) * np.cos(phi)
        y = r * np.sin(theta) * np.sin(phi)
        z = r * np.cos(theta)
        return x, y, z

    def __call__(self, action: np.ndarray) -> List[str]:
        """Discretize continuous actions to tokens.
        action: np.ndarray, (n, 3), continuous actions in Cartesian or Spherical coordinates.
        return: np.ndarray, (n,), tokens.
        """
        if self.use_spherical:
            theta, phi, r = self.cartesian_to_spherical(action[:, 0], action[:, 1], action[:, 2])
        else:
            theta, phi, r = action[:, 0], action[:, 1], action[:, 2]
            
        disc_theta = np.digitize(theta, self.theta_bins[1:-1]) # b
        disc_phi = np.digitize(phi, self.phi_bins[1:-1])
        disc_r = np.digitize(r, self.r_bins[1:-1])
        ids = disc_theta * self.NP + disc_phi * self.num_r_bins + disc_r
        return self.token_array[ids]

    def decode_token_ids_to_actions(self, action_token_id: np.ndarray) -> np.ndarray:
        """decode token ids to continuous actions.
        action_token_id: np.ndarray, (n,), token ids.
        return: np.ndarray, (n, 3), continuous actions
        """
        action_token_id = np.clip(action_token_id, self.token_start_idx, self.token_end_idx)
        ids = action_token_id - self.token_start_idx
        disc_theta, disc_phi, disc_r = ids // self.NP, (ids % self.NP) // self.num_r_bins, ids % self.num_r_bins

        theta = 0.5 * (self.theta_bins[disc_theta] + self.theta_bins[disc_theta + 1])
        phi = 0.5 * (self.phi_bins[disc_phi] + self.phi_bins[disc_phi + 1])
        r = 0.5 * (self.r_bins[disc_r] + self.r_bins[disc_r + 1])

        # clip action to [-1, 1], due to the spherical coordinate action space is the circumscribed sphere of the Cartesian action space.
        x, y, z = self.spherical_to_cartesian(theta, phi, r) if self.use_spherical else (theta, phi, r)
        x, y, z = np.clip([x, y, z], -1, 1)
        return np.stack((x, y, z), axis=1)

    @property
    def vocab_size(self) -> int:
        return self._vocab_size

class RotationTokenizer:
    def __init__(
        self,
        tokenizer: PreTrainedTokenizerBase,
        num_bins: Dict,
        bin_policy: Optional[Dict] = None,
        array_begin_idx=None,
    ):
        self.tokenizer = tokenizer
        self.num_roll_bins = num_bins["roll_bins"] # M
        self.num_pitch_bins = num_bins["pitch_bins"] # N
        self.num_yaw_bins = num_bins["yaw_bins"] # P
        self.array_begin_idx = array_begin_idx

        # for indexing
        self.NP = self.num_pitch_bins * self.num_yaw_bins

        # add special action tokens to language tokenizer
        self._vocab_size = self.num_roll_bins * self.num_pitch_bins * self.num_yaw_bins
        token_list = [ACTION_TOKEN.format(i + self.array_begin_idx) for i in range(self._vocab_size)]
        self.token_array = np.array(token_list)

        num_new_tokens = self.tokenizer.add_tokens(token_list, special_tokens=True)
        print(f"Add {num_new_tokens} ROTATION TOKENS to tokenizer, tokenizer vocab size {self.tokenizer.vocab_size} / {len(tokenizer)}")

        self.token_start_idx = self.tokenizer.convert_tokens_to_ids(self.token_array[0])
        self.token_end_idx = self.tokenizer.convert_tokens_to_ids(self.token_array[-1])
        self.set_bins(bin_policy)
    
    def set_bins(self, bin_policy):
        self.roll_bins = np.array(bin_policy["roll_bins"])
        self.pitch_bins = np.array(bin_policy["pitch_bins"])
        self.yaw_bins = np.array(bin_policy["yaw_bins"])

    def __call__(self, action: np.ndarray) -> List[str]:
        """Discretize continuous actions to tokens.
        action: np.ndarray, (n, 3), continuous actions in Cartesian or Spherical coordinates.
        return: np.ndarray, (n,), tokens.
        """
        roll, pitch, yaw = action[:, 0], action[:, 1], action[:, 2]
        disc_roll = np.clip(np.digitize(roll, self.roll_bins) - 1, 0, self.num_roll_bins - 1)
        disc_pitch = np.clip(np.digitize(pitch, self.pitch_bins) - 1, 0, self.num_pitch_bins - 1)
        disc_yaw = np.clip(np.digitize(yaw, self.yaw_bins) - 1, 0, self.num_yaw_bins - 1)

        ids = disc_roll * self.NP + disc_pitch * self.num_yaw_bins + disc_yaw
        return self.token_array[ids]

    def decode_token_ids_to_actions(self, action_token_id: Union[np.int64, np.ndarray]) -> np.ndarray:
        """decode token ids to continuous actions.
        action_token_id: np.ndarray, (n,), token ids.
        return: np.ndarray, (n, 3), continuous actions
        """
        action_token_id = np.clip(action_token_id, a_min=self.token_start_idx, a_max=self.token_end_idx)
        ids = action_token_id - self.token_start_idx
        disc_roll, disc_pitch, disc_yaw = ids // self.NP, (ids % self.NP) // self.num_yaw_bins, ids % self.num_yaw_bins

        roll = 0.5 * (self.roll_bins[disc_roll] + self.roll_bins[disc_roll + 1])
        pitch = 0.5 * (self.pitch_bins[disc_pitch] + self.pitch_bins[disc_pitch + 1])
        yaw = 0.5 * (self.yaw_bins[disc_yaw] + self.yaw_bins[disc_yaw + 1])
        return np.stack((roll, pitch, yaw), axis=1)

    @property
    def vocab_size(self) -> int:
        return self._vocab_size

class GripperTokenzier:
    def __init__(
        self,
        tokenizer: PreTrainedTokenizerBase,
        num_bins: int = 2,
        array_begin_idx = None,
    ) -> None:
        self.tokenizer = tokenizer
        self.num_bins = num_bins
        self.array_begin_idx = array_begin_idx
        token_list = [ACTION_TOKEN.format(i + self.array_begin_idx) for i in range(self.num_bins)]
        self.token_array = np.array(token_list)

        num_new_tokens = self.tokenizer.add_tokens(token_list, special_tokens=True)
        print(f"Add {num_new_tokens} GRIPPER TOKENS to tokenizer, tokenizer vocab size {self.tokenizer.vocab_size} / {len(tokenizer)}")

        self.token_start_idx = self.tokenizer.convert_tokens_to_ids(self.token_array[0])
        self.token_end_idx = self.tokenizer.convert_tokens_to_ids(self.token_array[-1])

    def __call__(self, action: np.ndarray) -> List[str]:
        """Discretize continuous actions to tokens.
        action: np.ndarray, (n,), continuous actions in Cartesian or Spherical coordinates.
        return: np.ndarray, (n,), tokens.
        """
        ids = np.where(action >= 0.5, 1, 0)
        return self.token_array[ids]

    def decode_token_ids_to_actions(self, action_token_id: np.ndarray) -> np.ndarray:
        """decode token ids to continuous actions.
        action_token_id: np.ndarray, (n,), token ids.
        return: np.ndarray, (n, 1), continuous actions
        """
        action_token_id = np.clip(action_token_id, self.token_start_idx, self.token_end_idx)
        ids = action_token_id - self.token_start_idx
        actions = np.where(ids == 0, 0., 1.)
        return actions[:, None]
    
    @property
    def vocab_size(self) -> int:
        return self.num_bins

class SphericalCoordinateActionTokenizer:
    range_bins = {
        "translation": {
            "theta_bins": (0.0, np.pi),
            "phi_bins": (-np.pi, np.pi),
            "r_bins": (0.0, np.sqrt(3)),
        },
        "rotation": {
            "roll_bins": (-1.0, 1.0),
            "pitch_bins": (-1.0, 1.0),
            "yaw_bins": (-1.0, 1.0),
        },
    }
    def __init__(
        self,
        tokenizer: PreTrainedTokenizerBase,
        num_bins: Dict,
        gs_params: Dict = None,
        bin_policy: Dict = None,
        use_spherical: bool = True,
        min_sigma: float = 0.0,
        min_action: float = -1.0,
        max_action: float = 1.0,
    ):
        """set bin_policy if exist, otherwise, caculate bin_policy from gs_params.(unifrom if None Gaussian)
        gs_params: Optional[Dict],
        bin_policy: Optional[Dict],
        """
        self.tokenizer = tokenizer
        self.min_action, self.max_action = min_action, max_action
        self.num_bins = num_bins
        self.min_sigma = min_sigma

        # set bin policy
        self.bin_policy = bin_policy if bin_policy else self.get_bin_policy(gs_params, self.min_sigma)

        self.translation_tokenizer = TranslationTokenizer(
            self.tokenizer,
            self.num_bins["translation"],
            self.bin_policy["translation"],
            use_spherical=use_spherical
        )

        self.rotation_tokenizer = RotationTokenizer(
            self.tokenizer,
            self.num_bins["rotation"],
            self.bin_policy["rotation"],
            array_begin_idx=self.translation_tokenizer.vocab_size,
        )

        self.gripper_tokenizer = GripperTokenzier(
            self.tokenizer, 
            self.num_bins["gripper"], 
            array_begin_idx=self.translation_tokenizer.vocab_size + self.rotation_tokenizer.vocab_size
        )
        self._vocab_size = self.translation_tokenizer.vocab_size + self.rotation_tokenizer.vocab_size + self.gripper_tokenizer.vocab_size

    def __call__(self, action: np.ndarray) -> List[str]:
        """Discretize continuous actions to tokens.
        action: np.ndarray, (n, 7), continuous actions in Cartesian coordinates.
        return: np.ndarray, (n, 3), tokens.
        """
        if len(action.shape) == 1:
            assert action.shape[0] == 7, f"action dim mismatch, got action shape: {action.shape}"
            action = action.reshape(1, 7)
        assert action.shape[1] == 7, f"action dim mismatch, got action shape: {action.shape}"

        action = np.clip(action, a_min=self.min_action, a_max=self.max_action)
        trans_tokens = self.translation_tokenizer(action[:, :3]) # (n,)
        rot_tokens = self.rotation_tokenizer(action[:, 3:6]) # (n,)
        grip_tokens = self.gripper_tokenizer(action[:, 6]) # (n,)
        return np.stack((trans_tokens, rot_tokens, grip_tokens), axis=1) # (n, 3)

    def decode_token_ids_to_actions(self, action_token_ids: np.ndarray) -> np.ndarray:
        """decode token ids to continuous actions.
        action_token_ids: np.ndarray, (n, 3), token ids.
        """
        if len(action_token_ids.shape) == 1:
            assert action_token_ids.shape[0] == 3, f"action token id numbers mismatich, need 3 got {action_token_ids.shape[0]}"
            action_token_ids = action_token_ids.reshape(1, 3)
        assert action_token_ids.shape[1] == 3, f"token id numbers mismatich, need 3 got {action_token_ids.shape[1]}"

        trans_action = self.translation_tokenizer.decode_token_ids_to_actions(action_token_ids[:, 0]) # (n, 3)
        rot_action = self.rotation_tokenizer.decode_token_ids_to_actions(action_token_ids[:, 1]) # (n, 3)
        grip_action = self.gripper_tokenizer.decode_token_ids_to_actions(action_token_ids[:, 2]) # (n, 1)
        return np.concatenate((trans_action, rot_action, grip_action), axis=1) # (n, 7)

    @property
    def vocab_size(self) -> int:
        return self._vocab_size

    @property
    def action_token_begin_idx(self) -> int:
        return self.translation_tokenizer.token_start_idx

    def get_bin_policy(self, gs_params=None, min_sigma=0.0):
        bin_policy = {
            "translation": {"theta_bins": None, "phi_bins": None, "r_bins": None}, 
            "rotation": {"roll_bins": None, "pitch_bins": None, "yaw_bins": None}
        }
        if gs_params is None:
            for bin_type in self.range_bins.keys():
                for bin_key in self.range_bins[bin_type].keys():
                    bin_policy[bin_type][bin_key] = np.linspace(*self.range_bins[bin_type][bin_key], self.num_bins[bin_type][bin_key] + 1)
            print(f"use unifrom bin grids ... \n{bin_policy}")
        else:
            for bin_type in self.range_bins.keys():
                for bin_key in self.range_bins[bin_type].keys():
                    mu = gs_params[bin_key.split("_")[0].lower()]["mu"]
                    sigma = max(gs_params[bin_key.split("_")[0].lower()]["sigma"], min_sigma)
                    bin_bound_prob = np.linspace(
                        norm.cdf(self.range_bins[bin_type][bin_key][0], loc=mu, scale=sigma),
                        norm.cdf(self.range_bins[bin_type][bin_key][1], loc=mu, scale=sigma),
                        self.num_bins[bin_type][bin_key] + 1,
                    )
                    bin_boundary = norm.ppf(bin_bound_prob, loc=mu, scale=sigma)
                    bin_policy[bin_type][bin_key] = np.clip(
                            bin_boundary,
                            self.range_bins[bin_type][bin_key][0],
                            self.range_bins[bin_type][bin_key][1],
                        ).tolist() # for serialize
            print(f"caculate bin grids from gaussians \n{bin_policy}")
        return bin_policy

    def get_norm_meshgrid(self, bin_policy):
        grids = []
        policy = {k1: {k2: np.array(v2) for k2, v2 in v1.items()} for k1, v1 in bin_policy.items()}
        # NOTE: use unify k,v order of range_bins (tpr, rpy)
        for bin_type in self.range_bins.keys():
            bounds = []
            for bin_key in self.range_bins[bin_type].keys():
                minb, maxb = self.range_bins[bin_type][bin_key][0], self.range_bins[bin_type][bin_key][1]
                bin_boundary = policy[bin_type][bin_key]
                bin_center = (bin_boundary[:-1] + bin_boundary[1:]) / 2
                bin_center = np.concatenate([np.array([minb]),bin_center,np.array([maxb])]) # padding
                bin_center = (bin_center - minb) /  (maxb - minb) # nomalize (m, n, k)
                bounds.append(bin_center)
            # generate grids
            grid_x, grid_y, grid_z = np.meshgrid(*bounds)
            grids += [np.stack([grid_x, grid_y, grid_z], -1).reshape(-1, 3)]
        return grids[0], grids[1] # (N, 3)

    def spatial_embedding_adaption(self, gs_params, embeddings: torch.nn.Embedding, min_sigma=0.0, adpt_feature=False):
        """
        gs_params0, gs_params1: Dict
        embeddings: tensor (S,E)
        """
        from scipy.interpolate import griddata
        # __import__("ipdb").set_trace()
        
        new_policy = self.get_bin_policy(gs_params, min_sigma=min_sigma)
        trans_grids0, rot_grids0 = self.get_norm_meshgrid(self.bin_policy)
        trans_grids1, rot_grids1 = self.get_norm_meshgrid(new_policy)
        
        print("🔥 overwrite bin policy and tokenizer bins ...")
        self.bin_policy = new_policy
        self.min_sigma = min_sigma
        self.translation_tokenizer.set_bins(new_policy["translation"])
        self.rotation_tokenizer.set_bins(new_policy["rotation"])

        if adpt_feature:
            emb_data = embeddings.weight.data # (S, e)
            _, E = emb_data.shape

            # translation
            m, n, k = (self.num_bins["translation"][k] for k in ["theta_bins", "phi_bins", "r_bins"])
            N = m*n*k
            trans_emb_data = emb_data[:N,].reshape(m, n, k, -1).permute(3, 0, 1, 2) # (e, m, n, k)
            pad_emb = torch.nn.functional.pad(trans_emb_data, (1, 1, 1, 1, 1, 1), "replicate").permute(1, 2, 3, 0).reshape(-1, E)
            adpt_trans_emb = griddata(trans_grids0, pad_emb.float(), trans_grids1, method='linear')
            adpt_trans_emb = adpt_trans_emb.reshape(m+2, n+2, k+2, E)[1:-1, 1:-1, 1:-1,]

            # rotation
            m1, n1, k1 = (self.num_bins["rotation"][k] for k in ["roll_bins", "pitch_bins", "yaw_bins"])
            M = m1*n1*k1
            rot_emb_data = emb_data[N : N + M,].reshape(m1, n1, k1, -1).permute(3, 0, 1, 2) # (e, m, n, k)
            pad_emb = torch.nn.functional.pad(rot_emb_data, (1, 1, 1, 1, 1, 1), "replicate").permute(1, 2, 3, 0).reshape(-1, E)
            adpt_rot_emb = griddata(rot_grids0, pad_emb.float(), rot_grids1, method='linear')
            adpt_rot_emb = adpt_rot_emb.reshape(m1+2, n1+2, k1+2, E)[1:-1, 1:-1, 1:-1,]

            # set data
            device, dtype = embeddings.weight.data.device, embeddings.weight.data.dtype
            embeddings.weight.data[:N] = torch.Tensor(adpt_trans_emb.reshape(-1, E), device=device).to(dtype)
            embeddings.weight.data[N:N+M] = torch.Tensor(adpt_rot_emb.reshape(-1, E), device=device).to(dtype)
            print("🚀 DONE! adapt spatial embedding to new gaussian distributation finished.")
            print(embeddings.weight.data)