File size: 20,851 Bytes
367577f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
# MIT License
# Copyright (c) 2025 IPEC at Shanghai AI Laboratory
# Permission is hereby granted, free of charge, to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND.
# coding=utf-8
"""
action_tokenizer.py
Extension class; wraps base LLM/VLM tokenizer with logic to discretize and tokenize continuous robot actions.
"""
from typing import List, Union, Dict, Tuple, Optional
import numpy as np
from transformers import PreTrainedTokenizerBase
from pathlib import Path
import json
from scipy.stats import norm
import torch
ACTION_TOKEN = '<ACTION{:05d}>'
"""Spatial Tokenizer"""
class ActionTokenizer:
def __init__(
self,
tokenizer: PreTrainedTokenizerBase,
num_bins: int = 256,
min_action: int = -1,
max_action: int = 1,
):
self._vocab_size = num_bins
self.tokenizer = tokenizer
self.min_action, self.max_action = min_action, max_action
self.bin_centers = np.linspace(min_action, max_action, num_bins)
# add special action tokens to language tokenizer
token_list = [ACTION_TOKEN.format(i) for i in range(self._vocab_size)]
self.token_array = np.array(token_list)
num_new_tokens = self.tokenizer.add_tokens(token_list, special_tokens=True)
print(f"Add {num_new_tokens} TRANSLATION TOKENS, tokenizer vocab size {self.tokenizer.vocab_size} / {len(tokenizer)}")
self.action_token_begin_idx = self.token_start_idx = self.tokenizer.convert_tokens_to_ids(self.token_array[0])
self.token_end_idx = self.tokenizer.convert_tokens_to_ids(self.token_array[-1])
def __call__(self, action: np.ndarray) -> List[str]:
"""Discretize continuous actions to tokens.
action: np.ndarray, (n, 7), continuous actions in Cartesian or Spherical coordinates.
return: np.ndarray, (n, 7), tokens.
"""
action = np.clip(action, a_min=float(self.min_action), a_max=float(self.max_action))
ids = np.digitize(action, self.bin_centers, right=True) # [0, 255]
return self.token_array[ids]
def decode_token_ids_to_actions(self, action_token_id: np.ndarray) -> np.ndarray:
"""decode token ids to continuous actions.
action_token_id: np.ndarray, (n, 7), token ids.
return: np.ndarray, (n, 7), continuous actions
"""
ids = action_token_id - self.action_token_begin_idx
ids = np.clip(ids, a_min=0, a_max=self._vocab_size - 1)
return self.bin_centers[ids]
@property
def vocab_size(self) -> int:
return self._vocab_size
"""Spatial Tokenizer"""
class TranslationTokenizer:
def __init__(
self,
tokenizer: PreTrainedTokenizerBase,
num_bins: Dict,
bin_policy: Optional[Dict] = None,
use_spherical: bool = True,
):
self.tokenizer = tokenizer
self.num_theta_bins = num_bins["theta_bins"]
self.num_phi_bins = num_bins["phi_bins"]
self.num_r_bins = num_bins["r_bins"]
self.use_spherical = use_spherical
# for indexing
self.NP = self.num_phi_bins * self.num_r_bins
# add special action tokens to language tokenizer
self._vocab_size = self.num_theta_bins * self.num_phi_bins * self.num_r_bins
token_list = [ACTION_TOKEN.format(i) for i in range(self._vocab_size)]
self.token_array = np.array(token_list)
num_new_tokens = self.tokenizer.add_tokens(token_list, special_tokens=True)
print(f"Add {num_new_tokens} TRANSLATION TOKENS, tokenizer vocab size {self.tokenizer.vocab_size} / {len(tokenizer)}")
self.token_start_idx = self.tokenizer.convert_tokens_to_ids(self.token_array[0])
self.token_end_idx = self.tokenizer.convert_tokens_to_ids(self.token_array[-1])
self.set_bins(bin_policy)
def set_bins(self, bin_policy):
self.theta_bins = np.array(bin_policy["theta_bins"])
self.phi_bins = np.array(bin_policy["phi_bins"])
self.r_bins = np.array(bin_policy["r_bins"])
def cartesian_to_spherical(self, x, y, z):
theta = np.arctan2(np.sqrt(x**2 + y**2), z) # polar angle
phi = np.arctan2(y, x) # azimuthal angle
r = np.sqrt(x**2 + y**2 + z**2)
return theta, phi, r
def spherical_to_cartesian(self, theta, phi, r):
x = r * np.sin(theta) * np.cos(phi)
y = r * np.sin(theta) * np.sin(phi)
z = r * np.cos(theta)
return x, y, z
def __call__(self, action: np.ndarray) -> List[str]:
"""Discretize continuous actions to tokens.
action: np.ndarray, (n, 3), continuous actions in Cartesian or Spherical coordinates.
return: np.ndarray, (n,), tokens.
"""
if self.use_spherical:
theta, phi, r = self.cartesian_to_spherical(action[:, 0], action[:, 1], action[:, 2])
else:
theta, phi, r = action[:, 0], action[:, 1], action[:, 2]
disc_theta = np.digitize(theta, self.theta_bins[1:-1]) # b
disc_phi = np.digitize(phi, self.phi_bins[1:-1])
disc_r = np.digitize(r, self.r_bins[1:-1])
ids = disc_theta * self.NP + disc_phi * self.num_r_bins + disc_r
return self.token_array[ids]
def decode_token_ids_to_actions(self, action_token_id: np.ndarray) -> np.ndarray:
"""decode token ids to continuous actions.
action_token_id: np.ndarray, (n,), token ids.
return: np.ndarray, (n, 3), continuous actions
"""
action_token_id = np.clip(action_token_id, self.token_start_idx, self.token_end_idx)
ids = action_token_id - self.token_start_idx
disc_theta, disc_phi, disc_r = ids // self.NP, (ids % self.NP) // self.num_r_bins, ids % self.num_r_bins
theta = 0.5 * (self.theta_bins[disc_theta] + self.theta_bins[disc_theta + 1])
phi = 0.5 * (self.phi_bins[disc_phi] + self.phi_bins[disc_phi + 1])
r = 0.5 * (self.r_bins[disc_r] + self.r_bins[disc_r + 1])
# clip action to [-1, 1], due to the spherical coordinate action space is the circumscribed sphere of the Cartesian action space.
x, y, z = self.spherical_to_cartesian(theta, phi, r) if self.use_spherical else (theta, phi, r)
x, y, z = np.clip([x, y, z], -1, 1)
return np.stack((x, y, z), axis=1)
@property
def vocab_size(self) -> int:
return self._vocab_size
class RotationTokenizer:
def __init__(
self,
tokenizer: PreTrainedTokenizerBase,
num_bins: Dict,
bin_policy: Optional[Dict] = None,
array_begin_idx=None,
):
self.tokenizer = tokenizer
self.num_roll_bins = num_bins["roll_bins"] # M
self.num_pitch_bins = num_bins["pitch_bins"] # N
self.num_yaw_bins = num_bins["yaw_bins"] # P
self.array_begin_idx = array_begin_idx
# for indexing
self.NP = self.num_pitch_bins * self.num_yaw_bins
# add special action tokens to language tokenizer
self._vocab_size = self.num_roll_bins * self.num_pitch_bins * self.num_yaw_bins
token_list = [ACTION_TOKEN.format(i + self.array_begin_idx) for i in range(self._vocab_size)]
self.token_array = np.array(token_list)
num_new_tokens = self.tokenizer.add_tokens(token_list, special_tokens=True)
print(f"Add {num_new_tokens} ROTATION TOKENS to tokenizer, tokenizer vocab size {self.tokenizer.vocab_size} / {len(tokenizer)}")
self.token_start_idx = self.tokenizer.convert_tokens_to_ids(self.token_array[0])
self.token_end_idx = self.tokenizer.convert_tokens_to_ids(self.token_array[-1])
self.set_bins(bin_policy)
def set_bins(self, bin_policy):
self.roll_bins = np.array(bin_policy["roll_bins"])
self.pitch_bins = np.array(bin_policy["pitch_bins"])
self.yaw_bins = np.array(bin_policy["yaw_bins"])
def __call__(self, action: np.ndarray) -> List[str]:
"""Discretize continuous actions to tokens.
action: np.ndarray, (n, 3), continuous actions in Cartesian or Spherical coordinates.
return: np.ndarray, (n,), tokens.
"""
roll, pitch, yaw = action[:, 0], action[:, 1], action[:, 2]
disc_roll = np.clip(np.digitize(roll, self.roll_bins) - 1, 0, self.num_roll_bins - 1)
disc_pitch = np.clip(np.digitize(pitch, self.pitch_bins) - 1, 0, self.num_pitch_bins - 1)
disc_yaw = np.clip(np.digitize(yaw, self.yaw_bins) - 1, 0, self.num_yaw_bins - 1)
ids = disc_roll * self.NP + disc_pitch * self.num_yaw_bins + disc_yaw
return self.token_array[ids]
def decode_token_ids_to_actions(self, action_token_id: Union[np.int64, np.ndarray]) -> np.ndarray:
"""decode token ids to continuous actions.
action_token_id: np.ndarray, (n,), token ids.
return: np.ndarray, (n, 3), continuous actions
"""
action_token_id = np.clip(action_token_id, a_min=self.token_start_idx, a_max=self.token_end_idx)
ids = action_token_id - self.token_start_idx
disc_roll, disc_pitch, disc_yaw = ids // self.NP, (ids % self.NP) // self.num_yaw_bins, ids % self.num_yaw_bins
roll = 0.5 * (self.roll_bins[disc_roll] + self.roll_bins[disc_roll + 1])
pitch = 0.5 * (self.pitch_bins[disc_pitch] + self.pitch_bins[disc_pitch + 1])
yaw = 0.5 * (self.yaw_bins[disc_yaw] + self.yaw_bins[disc_yaw + 1])
return np.stack((roll, pitch, yaw), axis=1)
@property
def vocab_size(self) -> int:
return self._vocab_size
class GripperTokenzier:
def __init__(
self,
tokenizer: PreTrainedTokenizerBase,
num_bins: int = 2,
array_begin_idx = None,
) -> None:
self.tokenizer = tokenizer
self.num_bins = num_bins
self.array_begin_idx = array_begin_idx
token_list = [ACTION_TOKEN.format(i + self.array_begin_idx) for i in range(self.num_bins)]
self.token_array = np.array(token_list)
num_new_tokens = self.tokenizer.add_tokens(token_list, special_tokens=True)
print(f"Add {num_new_tokens} GRIPPER TOKENS to tokenizer, tokenizer vocab size {self.tokenizer.vocab_size} / {len(tokenizer)}")
self.token_start_idx = self.tokenizer.convert_tokens_to_ids(self.token_array[0])
self.token_end_idx = self.tokenizer.convert_tokens_to_ids(self.token_array[-1])
def __call__(self, action: np.ndarray) -> List[str]:
"""Discretize continuous actions to tokens.
action: np.ndarray, (n,), continuous actions in Cartesian or Spherical coordinates.
return: np.ndarray, (n,), tokens.
"""
ids = np.where(action >= 0.5, 1, 0)
return self.token_array[ids]
def decode_token_ids_to_actions(self, action_token_id: np.ndarray) -> np.ndarray:
"""decode token ids to continuous actions.
action_token_id: np.ndarray, (n,), token ids.
return: np.ndarray, (n, 1), continuous actions
"""
action_token_id = np.clip(action_token_id, self.token_start_idx, self.token_end_idx)
ids = action_token_id - self.token_start_idx
actions = np.where(ids == 0, 0., 1.)
return actions[:, None]
@property
def vocab_size(self) -> int:
return self.num_bins
class SphericalCoordinateActionTokenizer:
range_bins = {
"translation": {
"theta_bins": (0.0, np.pi),
"phi_bins": (-np.pi, np.pi),
"r_bins": (0.0, np.sqrt(3)),
},
"rotation": {
"roll_bins": (-1.0, 1.0),
"pitch_bins": (-1.0, 1.0),
"yaw_bins": (-1.0, 1.0),
},
}
def __init__(
self,
tokenizer: PreTrainedTokenizerBase,
num_bins: Dict,
gs_params: Dict = None,
bin_policy: Dict = None,
use_spherical: bool = True,
min_sigma: float = 0.0,
min_action: float = -1.0,
max_action: float = 1.0,
):
"""set bin_policy if exist, otherwise, caculate bin_policy from gs_params.(unifrom if None Gaussian)
gs_params: Optional[Dict],
bin_policy: Optional[Dict],
"""
self.tokenizer = tokenizer
self.min_action, self.max_action = min_action, max_action
self.num_bins = num_bins
self.min_sigma = min_sigma
# set bin policy
self.bin_policy = bin_policy if bin_policy else self.get_bin_policy(gs_params, self.min_sigma)
self.translation_tokenizer = TranslationTokenizer(
self.tokenizer,
self.num_bins["translation"],
self.bin_policy["translation"],
use_spherical=use_spherical
)
self.rotation_tokenizer = RotationTokenizer(
self.tokenizer,
self.num_bins["rotation"],
self.bin_policy["rotation"],
array_begin_idx=self.translation_tokenizer.vocab_size,
)
self.gripper_tokenizer = GripperTokenzier(
self.tokenizer,
self.num_bins["gripper"],
array_begin_idx=self.translation_tokenizer.vocab_size + self.rotation_tokenizer.vocab_size
)
self._vocab_size = self.translation_tokenizer.vocab_size + self.rotation_tokenizer.vocab_size + self.gripper_tokenizer.vocab_size
def __call__(self, action: np.ndarray) -> List[str]:
"""Discretize continuous actions to tokens.
action: np.ndarray, (n, 7), continuous actions in Cartesian coordinates.
return: np.ndarray, (n, 3), tokens.
"""
if len(action.shape) == 1:
assert action.shape[0] == 7, f"action dim mismatch, got action shape: {action.shape}"
action = action.reshape(1, 7)
assert action.shape[1] == 7, f"action dim mismatch, got action shape: {action.shape}"
action = np.clip(action, a_min=self.min_action, a_max=self.max_action)
trans_tokens = self.translation_tokenizer(action[:, :3]) # (n,)
rot_tokens = self.rotation_tokenizer(action[:, 3:6]) # (n,)
grip_tokens = self.gripper_tokenizer(action[:, 6]) # (n,)
return np.stack((trans_tokens, rot_tokens, grip_tokens), axis=1) # (n, 3)
def decode_token_ids_to_actions(self, action_token_ids: np.ndarray) -> np.ndarray:
"""decode token ids to continuous actions.
action_token_ids: np.ndarray, (n, 3), token ids.
"""
if len(action_token_ids.shape) == 1:
assert action_token_ids.shape[0] == 3, f"action token id numbers mismatich, need 3 got {action_token_ids.shape[0]}"
action_token_ids = action_token_ids.reshape(1, 3)
assert action_token_ids.shape[1] == 3, f"token id numbers mismatich, need 3 got {action_token_ids.shape[1]}"
trans_action = self.translation_tokenizer.decode_token_ids_to_actions(action_token_ids[:, 0]) # (n, 3)
rot_action = self.rotation_tokenizer.decode_token_ids_to_actions(action_token_ids[:, 1]) # (n, 3)
grip_action = self.gripper_tokenizer.decode_token_ids_to_actions(action_token_ids[:, 2]) # (n, 1)
return np.concatenate((trans_action, rot_action, grip_action), axis=1) # (n, 7)
@property
def vocab_size(self) -> int:
return self._vocab_size
@property
def action_token_begin_idx(self) -> int:
return self.translation_tokenizer.token_start_idx
def get_bin_policy(self, gs_params=None, min_sigma=0.0):
bin_policy = {
"translation": {"theta_bins": None, "phi_bins": None, "r_bins": None},
"rotation": {"roll_bins": None, "pitch_bins": None, "yaw_bins": None}
}
if gs_params is None:
for bin_type in self.range_bins.keys():
for bin_key in self.range_bins[bin_type].keys():
bin_policy[bin_type][bin_key] = np.linspace(*self.range_bins[bin_type][bin_key], self.num_bins[bin_type][bin_key] + 1)
print(f"use unifrom bin grids ... \n{bin_policy}")
else:
for bin_type in self.range_bins.keys():
for bin_key in self.range_bins[bin_type].keys():
mu = gs_params[bin_key.split("_")[0].lower()]["mu"]
sigma = max(gs_params[bin_key.split("_")[0].lower()]["sigma"], min_sigma)
bin_bound_prob = np.linspace(
norm.cdf(self.range_bins[bin_type][bin_key][0], loc=mu, scale=sigma),
norm.cdf(self.range_bins[bin_type][bin_key][1], loc=mu, scale=sigma),
self.num_bins[bin_type][bin_key] + 1,
)
bin_boundary = norm.ppf(bin_bound_prob, loc=mu, scale=sigma)
bin_policy[bin_type][bin_key] = np.clip(
bin_boundary,
self.range_bins[bin_type][bin_key][0],
self.range_bins[bin_type][bin_key][1],
).tolist() # for serialize
print(f"caculate bin grids from gaussians \n{bin_policy}")
return bin_policy
def get_norm_meshgrid(self, bin_policy):
grids = []
policy = {k1: {k2: np.array(v2) for k2, v2 in v1.items()} for k1, v1 in bin_policy.items()}
# NOTE: use unify k,v order of range_bins (tpr, rpy)
for bin_type in self.range_bins.keys():
bounds = []
for bin_key in self.range_bins[bin_type].keys():
minb, maxb = self.range_bins[bin_type][bin_key][0], self.range_bins[bin_type][bin_key][1]
bin_boundary = policy[bin_type][bin_key]
bin_center = (bin_boundary[:-1] + bin_boundary[1:]) / 2
bin_center = np.concatenate([np.array([minb]),bin_center,np.array([maxb])]) # padding
bin_center = (bin_center - minb) / (maxb - minb) # nomalize (m, n, k)
bounds.append(bin_center)
# generate grids
grid_x, grid_y, grid_z = np.meshgrid(*bounds)
grids += [np.stack([grid_x, grid_y, grid_z], -1).reshape(-1, 3)]
return grids[0], grids[1] # (N, 3)
def spatial_embedding_adaption(self, gs_params, embeddings: torch.nn.Embedding, min_sigma=0.0, adpt_feature=False):
"""
gs_params0, gs_params1: Dict
embeddings: tensor (S,E)
"""
from scipy.interpolate import griddata
# __import__("ipdb").set_trace()
new_policy = self.get_bin_policy(gs_params, min_sigma=min_sigma)
trans_grids0, rot_grids0 = self.get_norm_meshgrid(self.bin_policy)
trans_grids1, rot_grids1 = self.get_norm_meshgrid(new_policy)
print("🔥 overwrite bin policy and tokenizer bins ...")
self.bin_policy = new_policy
self.min_sigma = min_sigma
self.translation_tokenizer.set_bins(new_policy["translation"])
self.rotation_tokenizer.set_bins(new_policy["rotation"])
if adpt_feature:
emb_data = embeddings.weight.data # (S, e)
_, E = emb_data.shape
# translation
m, n, k = (self.num_bins["translation"][k] for k in ["theta_bins", "phi_bins", "r_bins"])
N = m*n*k
trans_emb_data = emb_data[:N,].reshape(m, n, k, -1).permute(3, 0, 1, 2) # (e, m, n, k)
pad_emb = torch.nn.functional.pad(trans_emb_data, (1, 1, 1, 1, 1, 1), "replicate").permute(1, 2, 3, 0).reshape(-1, E)
adpt_trans_emb = griddata(trans_grids0, pad_emb.float(), trans_grids1, method='linear')
adpt_trans_emb = adpt_trans_emb.reshape(m+2, n+2, k+2, E)[1:-1, 1:-1, 1:-1,]
# rotation
m1, n1, k1 = (self.num_bins["rotation"][k] for k in ["roll_bins", "pitch_bins", "yaw_bins"])
M = m1*n1*k1
rot_emb_data = emb_data[N : N + M,].reshape(m1, n1, k1, -1).permute(3, 0, 1, 2) # (e, m, n, k)
pad_emb = torch.nn.functional.pad(rot_emb_data, (1, 1, 1, 1, 1, 1), "replicate").permute(1, 2, 3, 0).reshape(-1, E)
adpt_rot_emb = griddata(rot_grids0, pad_emb.float(), rot_grids1, method='linear')
adpt_rot_emb = adpt_rot_emb.reshape(m1+2, n1+2, k1+2, E)[1:-1, 1:-1, 1:-1,]
# set data
device, dtype = embeddings.weight.data.device, embeddings.weight.data.dtype
embeddings.weight.data[:N] = torch.Tensor(adpt_trans_emb.reshape(-1, E), device=device).to(dtype)
embeddings.weight.data[N:N+M] = torch.Tensor(adpt_rot_emb.reshape(-1, E), device=device).to(dtype)
print("🚀 DONE! adapt spatial embedding to new gaussian distributation finished.")
print(embeddings.weight.data) |