|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch PaliGemmamodel.""" |
|
|
|
from dataclasses import dataclass |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.linalg import inv |
|
import torchvision.transforms.functional as F |
|
|
|
import os |
|
from transformers.cache_utils import Cache, HybridCache, StaticCache |
|
from transformers.generation import GenerationMixin |
|
from transformers.modeling_utils import PreTrainedModel, PretrainedConfig |
|
from transformers.utils import ( |
|
ModelOutput, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
is_flash_attn_2_available, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from .configuration_spatialvla import SpatialVLAConfig |
|
from .modeling_ego3d import Ego3DPositionEmbeddingMLP, process_zoe |
|
from .modeling_gemma2 import Gemma2ForCausalLM |
|
|
|
if is_flash_attn_2_available(): |
|
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input |
|
|
|
from transformers import AutoModel, AutoModelForCausalLM, ZoeDepthForDepthEstimation |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = "PaliGemmaConfig" |
|
|
|
|
|
SIGLIP_MEAN, SIGLIP_STD = (0.5, 0.5, 0.5), (0.5, 0.5, 0.5) |
|
|
|
|
|
|
|
def _prepare_4d_causal_attention_mask_with_cache_position( |
|
attention_mask: torch.Tensor, |
|
sequence_length: int, |
|
target_length: int, |
|
dtype: torch.dtype, |
|
device: torch.device, |
|
min_dtype: float, |
|
cache_position: torch.Tensor, |
|
batch_size: int, |
|
is_training: bool = False, |
|
token_type_ids: torch.Tensor = None, |
|
**kwargs, |
|
): |
|
""" |
|
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape |
|
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. |
|
|
|
Args: |
|
attention_mask (`torch.Tensor`): |
|
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. |
|
sequence_length (`int`): |
|
The sequence length being processed. |
|
target_length (`int`): |
|
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. |
|
dtype (`torch.dtype`): |
|
The dtype to use for the 4D attention mask. |
|
device (`torch.device`): |
|
The device to plcae the 4D attention mask on. |
|
min_dtype (`float`): |
|
The minimum value representable with the dtype `dtype`. |
|
cache_position (`torch.Tensor`): |
|
Indices depicting the position of the input sequence tokens in the sequence. |
|
batch_size (`torch.Tensor`): |
|
Batch size. |
|
is_training (`bool`): |
|
Whether the model is in training mode or in inference. The condition is checked by presence/absence of `token_type_ids/labels` |
|
""" |
|
if attention_mask is not None and attention_mask.dim() == 4: |
|
|
|
causal_mask = attention_mask |
|
else: |
|
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device) |
|
|
|
if sequence_length != 1: |
|
if is_training: |
|
causal_mask = torch.triu(causal_mask, diagonal=1) |
|
else: |
|
causal_mask[:, :sequence_length] = 0.0 |
|
|
|
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1) |
|
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) |
|
if attention_mask is not None: |
|
causal_mask = causal_mask.clone() |
|
mask_length = attention_mask.shape[-1] |
|
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(causal_mask.device) |
|
padding_mask = padding_mask == 0 |
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( |
|
padding_mask, min_dtype |
|
) |
|
|
|
if is_training: |
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( |
|
token_type_ids[:, None, None, :].to(causal_mask.device) == 0, 0 |
|
) |
|
return causal_mask |
|
|
|
|
|
@dataclass |
|
class SpatialVLACausalLMOutputWithPast(ModelOutput): |
|
""" |
|
Base class for PaliGemmacausal language model (or autoregressive) outputs. |
|
|
|
Args: |
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): |
|
Language modeling loss (for next-token prediction). |
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.text_config.vocab_size)`): |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see |
|
`past_key_values` input) to speed up sequential decoding. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
image_hidden_states (`torch.FloatTensor`, *optional*): |
|
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`. |
|
image_hidden_states of the model produced by the vision encoder after projecting last hidden state. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
logits: torch.FloatTensor = None |
|
past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
image_hidden_states: Optional[torch.FloatTensor] = None |
|
|
|
|
|
class SpatialVLAMultiModalProjector(nn.Module): |
|
def __init__(self, config: SpatialVLAConfig): |
|
super().__init__() |
|
self.linear = nn.Linear(config.vision_config.hidden_size, config.vision_config.projection_dim, bias=True) |
|
|
|
def forward(self, image_features): |
|
hidden_states = self.linear(image_features) |
|
|
|
return hidden_states |
|
|
|
|
|
PALIGEMMA_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`PaliGemmaConfig`] or [`PaliGemmaVisionConfig`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.", |
|
PALIGEMMA_START_DOCSTRING, |
|
) |
|
class SpatialVLAPreTrainedModel(PreTrainedModel): |
|
config_class = SpatialVLAConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["SpatialVLAMultiModalProjector", "ZoeDepthForDepthEstimation", "Ego3DPositionEmbeddingMLP"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_supports_cache_class = True |
|
_supports_quantized_cache = True |
|
_supports_static_cache = True |
|
_supports_cache_class = True |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
|
|
def _init_weights(self, module): |
|
|
|
|
|
std = ( |
|
self.config.initializer_range |
|
if hasattr(self.config, "initializer_range") |
|
else self.config.text_config.initializer_range |
|
) |
|
|
|
if hasattr(module, "class_embedding"): |
|
module.class_embedding.data.normal_(mean=0.0, std=std) |
|
|
|
if isinstance(module, (nn.Linear, nn.Conv2d)): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
PALIGEMMA_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)): |
|
The tensors corresponding to the input images. Pixel values can be obtained using |
|
[`AutoImageProcessor`]. See [`SiglipImageProcessor.__call__`] for details ([]`PaliGemmaProcessor`] uses |
|
[`SiglipImageProcessor`] for processing images). |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see |
|
`past_key_values`). |
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
information on the default strategy. |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape |
|
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): |
|
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, |
|
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer |
|
the complete sequence length. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"""The PALIGEMMA model which consists of a vision backbone and a language model.""", |
|
PALIGEMMA_START_DOCSTRING, |
|
) |
|
class SpatialVLAForConditionalGeneration(SpatialVLAPreTrainedModel, GenerationMixin): |
|
def __init__(self, config: SpatialVLAConfig, vision_model=None, vision_zoe_model=None, projector_model=None, language_model=None): |
|
super().__init__(config) |
|
|
|
self.vision_tower = vision_model or AutoModel.from_config(config=config.vision_config) |
|
|
|
self.multi_modal_projector = projector_model or SpatialVLAMultiModalProjector(config) |
|
|
|
self.vocab_size = config.text_config.vocab_size |
|
if language_model is None: |
|
language_model = Gemma2ForCausalLM(config=config.text_config) if config.text_config.model_type == "gemma2" else AutoModelForCausalLM.from_config(config=config.text_config) |
|
|
|
if language_model._tied_weights_keys is not None: |
|
self._tied_weights_keys = [f"language_model.{k}" for k in language_model._tied_weights_keys] |
|
self.language_model = language_model |
|
|
|
if config.use_vision_zoe: |
|
|
|
self.vision_zoe_model = vision_zoe_model or ZoeDepthForDepthEstimation(config.vision_zoe_config) |
|
self.position_embedding_3d = Ego3DPositionEmbeddingMLP( |
|
config.ego3d_patch_reso**2 * 3, num_pos_feats=config.vision_config.hidden_size, n_freqs=config.n_freqs |
|
) |
|
|
|
patch_size, reso, image_size = config.vision_config.patch_size, config.ego3d_patch_reso, config.vision_config.image_size |
|
y, x = torch.meshgrid(torch.arange(0, image_size, patch_size // reso), torch.arange(0, image_size, patch_size // reso), indexing="ij") |
|
y, x = y + patch_size / reso / 2, x + patch_size / reso / 2 |
|
uv_h = torch.stack([x, y, torch.ones_like(x)], dim=0).reshape(3, -1) |
|
self.register_buffer("uv_h", uv_h, persistent=False) |
|
|
|
|
|
if config.use_spatial_token: |
|
self.spatial_embed_tokens = nn.Embedding(self.config.spatial_token_num, config.text_config.hidden_size) |
|
else: |
|
self.spatial_embed_tokens = None |
|
|
|
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1 |
|
|
|
|
|
|
|
|
|
def backproject_patch(self, K: torch.Tensor, depth: torch.Tensor, patch_size=14, reso=2) -> torch.Tensor: |
|
""" |
|
Backproject depth map to 3D points in camera coordinate. |
|
Args: |
|
K: camera intrinsic matrix (b 3 3) |
|
depth: depth map (b 1 h w) |
|
pixel_offset: offset to the pixel coordinate |
|
""" |
|
|
|
b, c, h, w = depth.shape |
|
hp, wp = h // patch_size, w // patch_size |
|
sub_hp = sub_wp = reso |
|
patch_depth = torch.nn.functional.interpolate(depth, size=(hp * reso, wp * reso), mode="area").reshape(b, c, -1) |
|
|
|
|
|
p_cam = (inv(K.float()) @ self.uv_h.float()) * patch_depth |
|
patch_p_cam = p_cam.reshape(b, 3, hp, sub_hp, wp, sub_wp).permute(0, 2, 4, 3, 5, 1).reshape(b, hp * wp, -1) |
|
return patch_p_cam |
|
|
|
|
|
def get_input_embeddings(self): |
|
return self.language_model.get_input_embeddings() |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
self.language_model.set_input_embeddings(value) |
|
|
|
|
|
def get_output_embeddings(self): |
|
return self.language_model.get_output_embeddings() |
|
|
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.language_model.set_output_embeddings(new_embeddings) |
|
|
|
|
|
def set_decoder(self, decoder): |
|
self.language_model.set_decoder(decoder) |
|
|
|
|
|
def get_decoder(self): |
|
return self.language_model.get_decoder() |
|
|
|
|
|
def tie_weights(self): |
|
return self.language_model.tie_weights() |
|
|
|
def resize_token_embeddings( |
|
self, |
|
new_num_tokens: Optional[int] = None, |
|
pad_to_multiple_of: Optional[int] = None, |
|
mean_resizing: bool = True, |
|
) -> nn.Embedding: |
|
|
|
print(f"resize token embeddings from {self.language_model.get_output_embeddings().weight.shape} to (*,{new_num_tokens})") |
|
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of, mean_resizing) |
|
|
|
|
|
vocab_size = model_embeds.weight.shape[0] |
|
self.config.text_config.vocab_size = self.vocab_size = self.config._vocab_size = vocab_size |
|
self.tie_weights() |
|
return model_embeds |
|
|
|
def _update_causal_mask( |
|
self, |
|
attention_mask, |
|
token_type_ids, |
|
past_key_values, |
|
cache_position, |
|
input_ids=None, |
|
inputs_embeds=None, |
|
is_training: bool = False, |
|
): |
|
if self.config.text_config._attn_implementation == "flash_attention_2": |
|
if attention_mask is not None and 0.0 in attention_mask: |
|
return attention_mask |
|
return None |
|
|
|
using_static_cache = isinstance(past_key_values, StaticCache) |
|
min_dtype = torch.finfo(self.dtype).min |
|
inputs_lead_dim = input_ids.shape[0] if input_ids is not None else inputs_embeds.shape[0] |
|
sequence_length = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] |
|
if using_static_cache: |
|
target_length = past_key_values.get_max_cache_shape() |
|
elif isinstance(past_key_values, HybridCache): |
|
target_length = past_key_values.get_max_cache_shape() |
|
else: |
|
target_length = ( |
|
attention_mask.shape[-1] |
|
if isinstance(attention_mask, torch.Tensor) |
|
else cache_position[0] + sequence_length + 1 |
|
) |
|
|
|
if attention_mask is not None and attention_mask.dim() == 4: |
|
|
|
return attention_mask |
|
|
|
causal_mask = torch.full( |
|
(sequence_length, target_length), fill_value=min_dtype, dtype=self.dtype, device=cache_position.device |
|
) |
|
|
|
if sequence_length != 1: |
|
if is_training: |
|
causal_mask = torch.triu(causal_mask, diagonal=1) |
|
else: |
|
causal_mask[:, :sequence_length] = 0.0 |
|
|
|
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1) |
|
causal_mask = causal_mask[None, None, :, :].expand(inputs_lead_dim, 1, -1, -1) |
|
if attention_mask is not None: |
|
causal_mask = causal_mask.clone() |
|
mask_length = attention_mask.shape[-1] |
|
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(causal_mask.device) |
|
padding_mask = padding_mask == 0 |
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( |
|
padding_mask, min_dtype |
|
) |
|
|
|
if is_training: |
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( |
|
token_type_ids[:, None, None, :].to(causal_mask.device) == 0, 0 |
|
) |
|
return causal_mask |
|
|
|
def get_image_features(self, pixel_values: torch.FloatTensor, intrinsic: torch.FloatTensor): |
|
""" |
|
Obtains image last hidden states from the vision tower and apply multimodal projection. |
|
|
|
Args: |
|
pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`) |
|
The tensors corresponding to the input images. |
|
Returns: |
|
image_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`). |
|
""" |
|
|
|
|
|
siglip_pixel_values = F.normalize(pixel_values, mean=SIGLIP_MEAN, std=SIGLIP_STD) |
|
image_outputs = self.vision_tower(siglip_pixel_values) |
|
|
|
|
|
if self.config.use_vision_zoe: |
|
zoe_pixel_values, ph, pw = process_zoe(pixel_values, pad_mode="reflect") |
|
with torch.no_grad(): |
|
pvh, pvw = pixel_values.shape[-2:] |
|
depth = self.vision_zoe_model(pixel_values=zoe_pixel_values).predicted_depth |
|
depth = torch.nn.functional.interpolate( |
|
depth.unsqueeze(1), |
|
size=(pvh+2*ph, pvw+2*pw), |
|
mode="bicubic", |
|
align_corners=True, |
|
)[..., ph:-ph, pw:-pw] |
|
|
|
xyz = self.backproject_patch( |
|
intrinsic, depth, patch_size=self.config.vision_config.patch_size, reso=self.config.ego3d_patch_reso |
|
) |
|
pos_embed_3d = self.position_embedding_3d(xyz) |
|
selected_image_feature = image_outputs.last_hidden_state + pos_embed_3d |
|
else: |
|
selected_image_feature = image_outputs.last_hidden_state |
|
image_features = self.multi_modal_projector(selected_image_feature) |
|
image_features = image_features / (self.config.text_config.hidden_size**0.5) |
|
return image_features |
|
|
|
@add_start_docstrings_to_model_forward(PALIGEMMA_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=SpatialVLACausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
pixel_values: torch.FloatTensor = None, |
|
actions: Optional[torch.FloatTensor] = None, |
|
intrinsic: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
num_logits_to_keep: int = 0, |
|
) -> Union[Tuple, SpatialVLACausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.text_config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.text_config.vocab_size]`. |
|
|
|
num_logits_to_keep (`int`, *optional*): |
|
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all |
|
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that |
|
token can save memory, which becomes pretty significant for long sequences or large vocabulary size. |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from PIL import Image |
|
>>> import requests |
|
>>> from transformers import AutoProcessor, PaliGemmaForConditionalGeneration |
|
|
|
>>> model = PaliGemmaForConditionalGeneration.from_pretrained("google/PaliGemma-test-224px-hf") |
|
>>> processor = AutoProcessor.from_pretrained("google/PaliGemma-test-224px-hf") |
|
|
|
>>> prompt = "answer en Where is the cow standing?" |
|
>>> url = "https://huggingface.co/gv-hf/PaliGemma-test-224px-hf/resolve/main/cow_beach_1.png" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> inputs = processor(images=image, text=prompt, return_tensors="pt") |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(**inputs, max_length=30) |
|
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"answer en Where is the cow standing?\nbeach" |
|
```""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
if pixel_values is not None and inputs_embeds is not None: |
|
raise ValueError( |
|
"You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one" |
|
) |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
is_training = token_type_ids is not None and labels is not None |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.get_input_embeddings()(input_ids).clone() |
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.config.use_spatial_token: |
|
spatial_selected = (input_ids >= self.config.action_token_begin_idx) & (input_ids < self.config.action_token_begin_idx + self.config.spatial_token_num) |
|
inputs_embeds[spatial_selected] = inputs_embeds[spatial_selected] * 0.0 + self.spatial_embed_tokens(input_ids[spatial_selected] - self.config.action_token_begin_idx) |
|
|
|
if cache_position is None: |
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
cache_position = torch.arange( |
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device |
|
) |
|
|
|
if position_ids is None: |
|
position_ids = cache_position.unsqueeze(0) + 1 |
|
|
|
|
|
if pixel_values is not None: |
|
image_features = self.get_image_features(pixel_values, intrinsic) |
|
|
|
special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1) |
|
special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device) |
|
if inputs_embeds[special_image_mask].numel() != image_features.numel(): |
|
image_tokens_in_text = torch.sum(input_ids == self.config.image_token_index) |
|
raise ValueError( |
|
f"Number of images does not match number of special image tokens in the input text. " |
|
f"Got {image_tokens_in_text} image tokens in the text but {image_features.shape[0] * image_features.shape[1]} " |
|
"tokens from image embeddings." |
|
) |
|
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype) |
|
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features) |
|
|
|
|
|
if labels is not None and self.pad_token_id in labels: |
|
logger.warning_once( |
|
"`labels` contains `pad_token_id` which will be masked with `config.ignore_index`. ", |
|
"You have to mask out `pad_token_id` when preparing `labels`, this behavior will be removed in v.4.46.", |
|
) |
|
labels = torch.where(input_ids == self.pad_token_id, self.config.ignore_index, labels) |
|
|
|
causal_mask = self._update_causal_mask( |
|
attention_mask, token_type_ids, past_key_values, cache_position, input_ids, inputs_embeds, is_training |
|
) |
|
outputs = self.language_model( |
|
attention_mask=causal_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
cache_position=cache_position, |
|
num_logits_to_keep=num_logits_to_keep, |
|
) |
|
|
|
logits = outputs.logits |
|
loss = None |
|
if labels is not None: |
|
|
|
logits = logits.float() |
|
shift_logits = logits[..., :-1, :] |
|
shift_labels = labels[..., 1:] |
|
if attention_mask is not None: |
|
|
|
|
|
shift_attention_mask = attention_mask[:, -shift_logits.shape[1] :].to(logits.device) |
|
shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous() |
|
shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous() |
|
else: |
|
shift_logits = shift_logits.contiguous() |
|
shift_labels = shift_labels.contiguous() |
|
|
|
loss_fct = nn.CrossEntropyLoss() |
|
|
|
flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size) |
|
flat_labels = shift_labels.view(-1).to(shift_logits.device) |
|
loss = loss_fct(flat_logits, flat_labels) |
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return SpatialVLACausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
image_hidden_states=image_features if pixel_values is not None else None, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
past_key_values=None, |
|
inputs_embeds=None, |
|
cache_position=None, |
|
position_ids=None, |
|
pixel_values=None, |
|
intrinsic=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
use_cache=True, |
|
num_logits_to_keep=None, |
|
labels=None, |
|
**kwargs, |
|
): |
|
|
|
model_inputs = self.language_model.prepare_inputs_for_generation( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
cache_position=cache_position, |
|
use_cache=use_cache, |
|
num_logits_to_keep=num_logits_to_keep, |
|
token_type_ids=token_type_ids, |
|
**kwargs, |
|
) |
|
|
|
|
|
if model_inputs.get("position_ids") is not None: |
|
model_inputs["position_ids"] += 1 |
|
|
|
|
|
if cache_position[0] == 0: |
|
model_inputs["pixel_values"] = pixel_values |
|
is_training = token_type_ids is not None and labels is not None |
|
if cache_position[0] == 0 and isinstance(past_key_values, HybridCache): |
|
causal_mask = self._update_causal_mask( |
|
attention_mask, token_type_ids, past_key_values, cache_position, input_ids, inputs_embeds, is_training |
|
) |
|
model_inputs["attention_mask"] = causal_mask |
|
model_inputs["intrinsic"] = intrinsic |
|
return model_inputs |
|
|
|
@torch.no_grad() |
|
def predict_action( |
|
self, |
|
model_inputs, |
|
) -> torch.Tensor: |
|
model_inputs = model_inputs.to(torch.bfloat16).to(self.device) |
|
input_len = model_inputs["input_ids"].shape[-1] |
|
generation_outputs = self.generate(**model_inputs, max_new_tokens=256, do_sample=False) |
|
return generation_outputs[:,input_len:] |
|
|
|
@classmethod |
|
def from_pretrained( |
|
cls, |
|
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], |
|
*model_args, |
|
config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None, |
|
cache_dir: Optional[Union[str, os.PathLike]] = None, |
|
ignore_mismatched_sizes: bool = False, |
|
force_download: bool = False, |
|
local_files_only: bool = False, |
|
token: Optional[Union[str, bool]] = None, |
|
revision: str = "main", |
|
use_safetensors: Optional[bool] = None, |
|
weights_only: bool = True, |
|
**kwargs, |
|
): |
|
model = super().from_pretrained( |
|
pretrained_model_name_or_path, |
|
*model_args, |
|
config=config, |
|
cache_dir=cache_dir, |
|
ignore_mismatched_sizes=ignore_mismatched_sizes, |
|
force_download=force_download, |
|
local_files_only=local_files_only, |
|
token=token, |
|
revision=revision, |
|
use_safetensors=use_safetensors, |
|
weights_only=weights_only, |
|
**kwargs, |
|
) |
|
|
|
|
|
|
|
if model.config.use_spatial_token: |
|
model.language_model.model.embed_tokens.weight.data[-model.config.spatial_token_num:] = model.spatial_embed_tokens.weight.data |
|
return model |