spatialvla-4b-mix-224-pt / processing_spatialvla.py
delinqu's picture
Upload folder using huggingface_hub
367577f verified
# MIT License
# Copyright (c) 2025 IPEC at Shanghai AI Laboratory
# Permission is hereby granted, free of charge, to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND.
# Based on code licensed under the Apache License, Version 2.0 by Google Inc. and HuggingFace Inc. team (Copyright 2024).
# coding=utf-8
"""
Processor class for PaliGemma.
"""
import logging
from typing import List, Optional, Union, Dict
import torch
import numpy as np
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput, is_valid_image
from transformers.processing_utils import (
ImagesKwargs,
ProcessingKwargs,
ProcessorMixin,
TextKwargs,
Unpack,
_validate_images_text_input_order,
)
from transformers.tokenization_utils_base import (
AddedToken,
PreTokenizedInput,
TextInput,
)
from transformers.utils import logging
from .action_tokenizer import SphericalCoordinateActionTokenizer
logger = logging.get_logger(__name__)
IMAGE_TOKEN = "<image>"
EXTRA_TOKENS = [f"<loc{i:0>4}>" for i in range(1024)] + [f"<seg{i:0>3}>" for i in range(128)]
class PaliGemmaTextKwargs(TextKwargs):
suffix: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]]
class PaliGemmaImagesKwargs(ImagesKwargs):
do_convert_rgb: Optional[bool]
class PaliGemmaProcessorKwargs(ProcessingKwargs, total=False):
text_kwargs: PaliGemmaTextKwargs
images_kwargs: PaliGemmaImagesKwargs
_defaults = {
"text_kwargs": {
"padding": False,
},
"images_kwargs": {
"data_format": "channels_first",
},
}
# Copied from transformers.models.idefics2.processing_idefics2.is_url
def is_url(val) -> bool:
return isinstance(val, str) and val.startswith("http")
# Copied from transformers.models.idefics2.processing_idefics2.is_image_or_image_url
def is_image_or_image_url(elem):
return is_url(elem) or is_valid_image(elem)
def _is_str_or_image(elem):
return isinstance(elem, (str)) or is_image_or_image_url(elem)
def build_string_from_input(prompt, bos_token, image_seq_len, image_token, num_images):
"""
Builds a string from the input prompt and image tokens.
For example, for the call:
build_string_from_input(
prompt="Prefix str"
bos_token="<s>",
image_seq_len=3,
image_token="<im>",
)
The output will be:
"<im><im><im><s>Initial str"
Args:
prompt (`List[Union[str, ImageInput]]`): The input prompt.
bos_token (`str`): The beginning of sentence token.
image_seq_len (`int`): The length of the image sequence.
image_token (`str`): The image token.
num_images (`int`): Number of images in the prompt.
"""
return f"{image_token * image_seq_len * num_images}{bos_token}{prompt}\n"
# Copied from transformers.models.llava_next.image_processing_llava_next.make_batched_images
def make_batched_images(images) -> List[List[ImageInput]]:
"""
Accepts images in list or nested list format, and makes a list of images for preprocessing.
Args:
images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`):
The input image.
Returns:
list: A list of images.
"""
if isinstance(images, (list, tuple)) and isinstance(images[0], (list, tuple)) and is_valid_image(images[0][0]):
return [img for img_list in images for img in img_list]
elif isinstance(images, (list, tuple)) and is_valid_image(images[0]):
return images
elif is_valid_image(images):
return [images]
raise ValueError(f"Could not make batched video from {images}")
class SpatialVLAProcessor(ProcessorMixin):
r"""
Constructs a PaliGemma processor which wraps a PaliGemma image processor and a PaliGemma tokenizer into a single processor.
[`PaliGemmaProcessor`] offers all the functionalities of [`SiglipImageProcessor`] and [`LlamaTokenizerFast`]. See the
[`~PaliGemmaProcessor.__call__`] and [`~PaliGemmaProcessor.decode`] for more information.
Args:
image_processor ([`SiglipImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`LlamaTokenizerFast`], *optional*):
The tokenizer is a required input.
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
in a chat into a tokenizable string.
"""
attributes = ["image_processor", "tokenizer"]
valid_kwargs = ["chat_template"]
image_processor_class = "SiglipImageProcessor"
tokenizer_class = ("GemmaTokenizer", "GemmaTokenizerFast")
def __init__(
self,
image_processor=None,
tokenizer=None,
chat_template=None,
statistics: Optional[dict] = None,
bin_policy=None,
intrinsic_config=None,
action_config=None,
num_obs_steps=1,
obs_delta=1,
action_chunk_size=1,
min_sigma=0.0,
**kwargs,
):
if image_processor is None:
raise ValueError("You need to specify an `image_processor`.")
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`.")
if not hasattr(image_processor, "image_seq_length"):
raise ValueError("Image processor is missing an `image_seq_length` attribute.")
self.image_seq_length = image_processor.image_seq_length
if not hasattr(tokenizer, "image_token"):
image_token = AddedToken(IMAGE_TOKEN, normalized=False, special=True)
tokens_to_add = {"additional_special_tokens": [image_token]}
tokenizer.add_special_tokens(tokens_to_add)
self.image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN)
else:
self.image_token_id = tokenizer.image_token_id
tokenizer.add_tokens(EXTRA_TOKENS)
tokenizer.add_bos_token = False
tokenizer.add_eos_token = False
super().__init__(image_processor, tokenizer, chat_template=chat_template)
# action tokenizer
self.statistics = statistics if statistics else {}
self.bin_policy = bin_policy
self.min_sigma = min_sigma
self.intrinsic_config = intrinsic_config
self.action_config = action_config
self.num_obs_steps = num_obs_steps
self.obs_delta = obs_delta
self.action_chunk_size = action_chunk_size
self.dataset_intrinsics = {}
height, width = image_processor.size["height"], image_processor.size["width"]
for k, v in intrinsic_config.items():
K = torch.tensor(v["intrinsic"]).float()
h, w = v["height"], v["width"]
K[0, 0] *= width / w
K[1, 1] *= height / h
K[0, 2] *= width / w
K[1, 2] *= height / h
self.dataset_intrinsics[k] = K
print(f"scale intrinsic of {k} from {v['intrinsic']} to {K} ...")
self.action_tokenizer = SphericalCoordinateActionTokenizer(
tokenizer=tokenizer, num_bins=action_config["num_bins"],
bin_policy=bin_policy, use_spherical=action_config["use_spherical"],
min_sigma=min_sigma,
)
def __call__(
self,
images: ImageInput = None,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
audio=None,
videos=None,
unnorm_key: Optional[str] = None,
suffix_actions: Optional[np.array] = None, # (t e)
**kwargs: Unpack[PaliGemmaProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
SiglipImageProcessor's [`~SiglipImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
of the above two methods for more information.
The usage for PaliGemma fine-tuning preparation is slightly different than usual. suffix passed are suffixes to
the prompt in `text`, and will be placed after the prompt. This is because attention is handled differently for
the prefix and the suffix. For instance,
```python
image = PIL_cow_image
prompt = "answer en Where is the cow standing?"
suffix = "on the beach"
inputs = processor(text=prompt, images=image, suffix=suffix)
```
Here `inputs` will contain the `input_ids` and `token_type_ids` that follow
```python
inputs["input_ids"][:, 256:]
# tensor([[ 2, 6006, 603, 573, 13910, 9980, 235336, 108, 477, 573, 8318]])
inputs["token_type_ids"][:, 256:]
tensor([[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1]])
```
Meaning the last three tokens are of "label" ("suffix") type while the other ones are of "prefix" type.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
number of channels, H and W are image height and width.
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
suffix (`str`, `List[str]`, `List[List[str]]`):
The suffixes or batch of suffixes to be encoded. Only necessary for finetuning. See https://github.com/google-research/big_vision/blob/main/big_vision/configs/proj/paligemma/README.md
for more information. If your prompt is "<image> What is on the image", the suffix corresponds to the expected prediction "a cow sitting on a bench".
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. If `suffix`
is provided, the `input_ids` will also contain the suffix input ids.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
- **labels** -- Labels compatible with training if `suffix` is not None
"""
# check if images and text inputs are reversed for BC
images, text = _validate_images_text_input_order(images, text)
output_kwargs = self._merge_kwargs(
PaliGemmaProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
if suffix_actions is not None:
action_tokens = self.action_tokenizer(suffix_actions) # (n,3)
suffix="".join(action_tokens.flatten())
else:
suffix = output_kwargs["text_kwargs"].pop("suffix", None)
return_token_type_ids = True if suffix is not None else False
if images is None:
raise ValueError("`images` are expected as arguments to a `PaliGemmaProcessor` instance.")
if text is None:
logger.warning_once(
"You are using PaliGemma without a text prefix. It will perform as a picture-captioning model."
)
text = ""
if _is_str_or_image(text):
text = [text]
elif isinstance(text, list) and _is_str_or_image(text[0]):
pass
if text is not None and images is not None:
if not any(IMAGE_TOKEN in sample for sample in text):
# logger.warning(
# "You are passing both `text` and `images` to `PaliGemmaProcessor`. The processor expects special "
# "image tokens in the text, as many tokens as there are images per each text. It is recommended to "
# "add `<image>` tokens in the very beginning of your text. For this call, we will infer how many images "
# "each text has and add special tokens."
# )
if isinstance(text, List) and isinstance(images, List):
if len(images) != len(text):
raise ValueError(
f"Received {len(images)} images for {len(text)} prompts. Each prompt should be associated with an image or list of images."
)
# make a nested list of lists to be able to iterate over the images and text below
if is_valid_image(images):
images = [[images]]
elif isinstance(images, list) and is_valid_image(images[0]):
images = [[image] for image in images]
elif not (isinstance(images, list) and isinstance(images[0], list) and is_valid_image(images[0][0])):
raise ValueError("images must be an image, list of images or list of list of images")
if suffix is not None and _is_str_or_image(suffix):
suffix = [suffix]
if suffix is not None:
suffix = [sfx + self.tokenizer.eos_token for sfx in suffix]
input_strings = [
build_string_from_input(
prompt=prompt,
bos_token=self.tokenizer.bos_token,
image_seq_len=self.image_seq_length,
image_token=IMAGE_TOKEN,
num_images=len(image_list) if isinstance(image_list, list) else 1,
)
for prompt, image_list in zip(text, images)
]
images = make_batched_images(images)
else:
expanded_samples = []
for sample in text:
expanded_sample = sample.replace(IMAGE_TOKEN, IMAGE_TOKEN * self.image_seq_length)
bos_rfind_index = expanded_sample.rfind(IMAGE_TOKEN)
bos_index = bos_rfind_index + len(IMAGE_TOKEN) if bos_rfind_index != -1 else 0
expanded_sample = (
expanded_sample[:bos_index] + self.tokenizer.bos_token + expanded_sample[bos_index:]
)
expanded_samples.append(expanded_sample)
input_strings = [f"{sample}\n" for sample in expanded_samples]
pixel_values = self.image_processor(images, **output_kwargs["images_kwargs"])["pixel_values"]
# max_length has to account for the image tokens
if output_kwargs["text_kwargs"].get("max_length", None) is not None:
output_kwargs["text_kwargs"]["max_length"] += self.image_seq_length
inputs = self.tokenizer(
input_strings,
text_pair=suffix,
return_token_type_ids=return_token_type_ids,
**output_kwargs["text_kwargs"],
)
intrinsic = self.dataset_intrinsics[unnorm_key] if unnorm_key in self.dataset_intrinsics else self.dataset_intrinsics["default"]
return_data = {**inputs, "pixel_values": pixel_values, "intrinsic": intrinsic}
if return_token_type_ids:
labels = inputs["input_ids"].masked_fill(inputs["token_type_ids"] == 0, -100)
return_data.update({"labels": labels})
return BatchFeature(data=return_data)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Gemma
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Gemma
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names with CLIP->PaliGemma
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
def decode_actions(
self,
generation_outputs: torch.Tensor,
unnorm_key: Optional[str] = None,
) -> Dict[str, torch.Tensor]:
action_token_num = 3 # translation + rotation + gripper
predicted_action_token_ids = generation_outputs[0, : action_token_num * self.action_chunk_size].detach().cpu().long().numpy()
assert self.tokenizer.eos_token != predicted_action_token_ids[-1], "[error] actions contain EOS token, please check you truncation settings!"
if predicted_action_token_ids.shape[0] < action_token_num * self.action_chunk_size: # pad with zeros
print(f"[warning] Padding zero action!")
predicted_action_token_ids = np.concatenate(
[
predicted_action_token_ids,
np.zeros(action_token_num * self.action_chunk_size - predicted_action_token_ids.shape[0], dtype=np.longlong),
]
)
predicted_action_token_ids = predicted_action_token_ids.reshape(-1, action_token_num)
normalized_action_chunks = self.action_tokenizer.decode_token_ids_to_actions(predicted_action_token_ids)
# Unnormalize actions
if unnorm_key is None:
print(f"🔥 unnorm_key {unnorm_key} is not in statistics, use next one")
unnorm_key = next(self.statistics.keys())
action_norm_stats = self.statistics[unnorm_key]["action"]
action_dim = len(action_norm_stats["q01"])
mask = np.array(action_norm_stats.get("mask", np.ones(action_dim)), dtype=bool)
action_high, action_low = np.array(action_norm_stats["q99"]), np.array(action_norm_stats["q01"])
actions = []
for normalized_actions in normalized_action_chunks:
action = np.where(
mask,
0.5 * (normalized_actions + 1) * (action_high - action_low) + action_low,
normalized_actions,
)
actions.append(action)
actions = np.stack(actions)
return {"actions": actions, "action_ids": predicted_action_token_ids}