--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: XLM-AgloBERTa-eu-hu-ner results: [] --- # XLM-AgloBERTa-eu-hu-ner This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2582 - Precision: 0.9039 - Recall: 0.9209 - F1: 0.9123 - Accuracy: 0.9661 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2501 | 1.0 | 1250 | 0.1919 | 0.8343 | 0.8634 | 0.8486 | 0.9456 | | 0.1718 | 2.0 | 2500 | 0.1631 | 0.8662 | 0.8793 | 0.8727 | 0.9540 | | 0.1269 | 3.0 | 3750 | 0.1743 | 0.8748 | 0.8913 | 0.8830 | 0.9571 | | 0.0899 | 4.0 | 5000 | 0.1642 | 0.8734 | 0.9083 | 0.8905 | 0.9587 | | 0.0578 | 5.0 | 6250 | 0.1958 | 0.8867 | 0.9000 | 0.8933 | 0.9599 | | 0.0474 | 6.0 | 7500 | 0.1823 | 0.9062 | 0.9069 | 0.9065 | 0.9647 | | 0.031 | 7.0 | 8750 | 0.1928 | 0.9007 | 0.9137 | 0.9071 | 0.9643 | | 0.0168 | 8.0 | 10000 | 0.2168 | 0.9042 | 0.9113 | 0.9077 | 0.9644 | | 0.0109 | 9.0 | 11250 | 0.2423 | 0.9028 | 0.9191 | 0.9108 | 0.9658 | | 0.0057 | 10.0 | 12500 | 0.2582 | 0.9039 | 0.9209 | 0.9123 | 0.9661 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0