--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: test-ner results: [] --- # test-ner This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2327 - Precision: 0.9133 - Recall: 0.9225 - F1: 0.9179 - Accuracy: 0.9687 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3488 | 1.0 | 625 | 0.1874 | 0.8414 | 0.8560 | 0.8487 | 0.9486 | | 0.1914 | 2.0 | 1250 | 0.1857 | 0.8674 | 0.8794 | 0.8734 | 0.9552 | | 0.1418 | 3.0 | 1875 | 0.1618 | 0.8752 | 0.8906 | 0.8828 | 0.9596 | | 0.0883 | 4.0 | 2500 | 0.1701 | 0.8952 | 0.9011 | 0.8982 | 0.9631 | | 0.0582 | 5.0 | 3125 | 0.1873 | 0.8774 | 0.9149 | 0.8958 | 0.9620 | | 0.0453 | 6.0 | 3750 | 0.1902 | 0.9008 | 0.9131 | 0.9069 | 0.9641 | | 0.0353 | 7.0 | 4375 | 0.2059 | 0.8992 | 0.9067 | 0.9029 | 0.9654 | | 0.015 | 8.0 | 5000 | 0.2231 | 0.9031 | 0.9183 | 0.9106 | 0.9659 | | 0.0114 | 9.0 | 5625 | 0.2234 | 0.9120 | 0.9198 | 0.9159 | 0.9677 | | 0.0066 | 10.0 | 6250 | 0.2327 | 0.9133 | 0.9225 | 0.9179 | 0.9687 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0