--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: XLM-AgloBERTa-hu-ner results: [] --- # XLM-AgloBERTa-hu-ner This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2705 - Precision: 0.9070 - Recall: 0.9256 - F1: 0.9162 - Accuracy: 0.9671 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0861 | 1.0 | 1250 | 0.2330 | 0.8811 | 0.9005 | 0.8907 | 0.9574 | | 0.0666 | 2.0 | 2500 | 0.1955 | 0.8842 | 0.9113 | 0.8975 | 0.9597 | | 0.0613 | 3.0 | 3750 | 0.2059 | 0.8941 | 0.9035 | 0.8988 | 0.9603 | | 0.0408 | 4.0 | 5000 | 0.2386 | 0.9021 | 0.9023 | 0.9022 | 0.9616 | | 0.0327 | 5.0 | 6250 | 0.2314 | 0.8892 | 0.9188 | 0.9038 | 0.9621 | | 0.0222 | 6.0 | 7500 | 0.2574 | 0.9015 | 0.9108 | 0.9061 | 0.9631 | | 0.0143 | 7.0 | 8750 | 0.2482 | 0.9070 | 0.9192 | 0.9131 | 0.9657 | | 0.0093 | 8.0 | 10000 | 0.2570 | 0.9092 | 0.9206 | 0.9149 | 0.9664 | | 0.0044 | 9.0 | 11250 | 0.2697 | 0.9055 | 0.9199 | 0.9126 | 0.9660 | | 0.0026 | 10.0 | 12500 | 0.2705 | 0.9070 | 0.9256 | 0.9162 | 0.9671 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0