File size: 1,740 Bytes
d458590
 
8831289
 
 
 
 
 
d458590
8831289
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
model-index:
- name: BasqueBerta-base-FT
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# BasqueBerta-base-FT

This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3019

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log        | 1.0   | 65   | 3.3258          |
| No log        | 2.0   | 130  | 3.0231          |
| No log        | 3.0   | 195  | 3.0215          |
| No log        | 4.0   | 260  | 2.9057          |
| No log        | 5.0   | 325  | 2.6933          |
| No log        | 6.0   | 390  | 2.7688          |
| No log        | 7.0   | 455  | 2.4967          |
| 2.917         | 8.0   | 520  | 2.4606          |
| 2.917         | 9.0   | 585  | 2.4320          |
| 2.917         | 10.0  | 650  | 2.3019          |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0