File size: 6,677 Bytes
224eb8d
4fca215
 
224eb8d
 
 
 
4fca215
 
 
 
 
224eb8d
 
4fca215
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
224eb8d
 
 
 
 
 
 
4fca215
224eb8d
4fca215
 
 
 
 
224eb8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fca215
 
224eb8d
 
 
4fca215
224eb8d
 
 
4fca215
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
224eb8d
 
 
 
 
 
4fca215
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
---
license: cc-by-sa-4.0
base_model: ClassCat/roberta-small-basque
tags:
- generated_from_trainer
datasets:
- basque_glue
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: XLM-EusBERTa-sentiment-classification
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: basque_glue
      type: basque_glue
      config: bec
      split: validation
      args: bec
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.6290322580645161
    - name: F1
      type: f1
      value: 0.6290834931512662
    - name: Precision
      type: precision
      value: 0.630304630215078
    - name: Recall
      type: recall
      value: 0.6290322580645161
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# XLM-EusBERTa-sentiment-classification

This model is a fine-tuned version of [ClassCat/roberta-small-basque](https://huggingface.co/ClassCat/roberta-small-basque) on the basque_glue dataset.
It achieves the following results on the evaluation set:
- Loss: 4.0012
- Accuracy: 0.6290
- F1: 0.6291
- Precision: 0.6303
- Recall: 0.6290

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
| No log        | 1.0   | 380   | 0.7366          | 0.6736   | 0.6589 | 0.6711    | 0.6736 |
| 0.7679        | 2.0   | 760   | 0.7654          | 0.6767   | 0.6692 | 0.6726    | 0.6767 |
| 0.4846        | 3.0   | 1140  | 0.9844          | 0.6621   | 0.6599 | 0.6681    | 0.6621 |
| 0.2952        | 4.0   | 1520  | 1.1162          | 0.6375   | 0.6371 | 0.6473    | 0.6375 |
| 0.2952        | 5.0   | 1900  | 1.4234          | 0.6329   | 0.6343 | 0.6425    | 0.6329 |
| 0.192         | 6.0   | 2280  | 1.8570          | 0.6413   | 0.6362 | 0.6424    | 0.6413 |
| 0.159         | 7.0   | 2660  | 2.1968          | 0.6152   | 0.6086 | 0.6152    | 0.6152 |
| 0.1265        | 8.0   | 3040  | 2.1853          | 0.6283   | 0.6267 | 0.6267    | 0.6283 |
| 0.1265        | 9.0   | 3420  | 2.1953          | 0.6467   | 0.6441 | 0.6435    | 0.6467 |
| 0.0807        | 10.0  | 3800  | 2.2806          | 0.6367   | 0.6381 | 0.6480    | 0.6367 |
| 0.0688        | 11.0  | 4180  | 2.7982          | 0.6175   | 0.6167 | 0.6356    | 0.6175 |
| 0.0675        | 12.0  | 4560  | 2.5182          | 0.6605   | 0.6587 | 0.6584    | 0.6605 |
| 0.0675        | 13.0  | 4940  | 2.6544          | 0.6413   | 0.6315 | 0.6391    | 0.6413 |
| 0.0451        | 14.0  | 5320  | 2.5889          | 0.6459   | 0.6427 | 0.6424    | 0.6459 |
| 0.0432        | 15.0  | 5700  | 2.8100          | 0.6290   | 0.6299 | 0.6359    | 0.6290 |
| 0.0297        | 16.0  | 6080  | 2.9983          | 0.6275   | 0.6262 | 0.6263    | 0.6275 |
| 0.0297        | 17.0  | 6460  | 2.7803          | 0.6313   | 0.6289 | 0.6311    | 0.6313 |
| 0.0369        | 18.0  | 6840  | 2.9602          | 0.6283   | 0.6287 | 0.6353    | 0.6283 |
| 0.0289        | 19.0  | 7220  | 2.9911          | 0.6298   | 0.6309 | 0.6356    | 0.6298 |
| 0.0251        | 20.0  | 7600  | 2.8634          | 0.6344   | 0.6350 | 0.6364    | 0.6344 |
| 0.0251        | 21.0  | 7980  | 2.7171          | 0.6406   | 0.6378 | 0.6375    | 0.6406 |
| 0.0332        | 22.0  | 8360  | 3.0386          | 0.6275   | 0.6215 | 0.6245    | 0.6275 |
| 0.0212        | 23.0  | 8740  | 2.9876          | 0.6313   | 0.6319 | 0.6344    | 0.6313 |
| 0.0218        | 24.0  | 9120  | 2.9776          | 0.6283   | 0.6267 | 0.6348    | 0.6283 |
| 0.0189        | 25.0  | 9500  | 2.9596          | 0.6329   | 0.6340 | 0.6381    | 0.6329 |
| 0.0189        | 26.0  | 9880  | 3.0420          | 0.6329   | 0.6324 | 0.6380    | 0.6329 |
| 0.0172        | 27.0  | 10260 | 3.3335          | 0.6336   | 0.6348 | 0.6369    | 0.6336 |
| 0.0054        | 28.0  | 10640 | 3.2843          | 0.6429   | 0.6442 | 0.6466    | 0.6429 |
| 0.0065        | 29.0  | 11020 | 3.4868          | 0.6275   | 0.6291 | 0.6399    | 0.6275 |
| 0.0065        | 30.0  | 11400 | 3.8241          | 0.6175   | 0.6174 | 0.6209    | 0.6175 |
| 0.0108        | 31.0  | 11780 | 3.5833          | 0.6260   | 0.6275 | 0.6317    | 0.6260 |
| 0.0127        | 32.0  | 12160 | 3.5452          | 0.6183   | 0.6203 | 0.6283    | 0.6183 |
| 0.0092        | 33.0  | 12540 | 3.8349          | 0.6167   | 0.6167 | 0.6389    | 0.6167 |
| 0.0092        | 34.0  | 12920 | 3.6464          | 0.6244   | 0.6260 | 0.6313    | 0.6244 |
| 0.0069        | 35.0  | 13300 | 3.7538          | 0.6352   | 0.6352 | 0.6359    | 0.6352 |
| 0.0028        | 36.0  | 13680 | 3.8862          | 0.6221   | 0.6243 | 0.6350    | 0.6221 |
| 0.0001        | 37.0  | 14060 | 3.9846          | 0.6229   | 0.6206 | 0.6252    | 0.6229 |
| 0.0001        | 38.0  | 14440 | 3.7743          | 0.6275   | 0.6287 | 0.6309    | 0.6275 |
| 0.0057        | 39.0  | 14820 | 3.9002          | 0.6290   | 0.6300 | 0.6319    | 0.6290 |
| 0.0004        | 40.0  | 15200 | 3.9651          | 0.6306   | 0.6315 | 0.6333    | 0.6306 |
| 0.0032        | 41.0  | 15580 | 4.0279          | 0.6206   | 0.6213 | 0.6365    | 0.6206 |
| 0.0032        | 42.0  | 15960 | 3.8244          | 0.6344   | 0.6342 | 0.6344    | 0.6344 |
| 0.0033        | 43.0  | 16340 | 3.9036          | 0.6198   | 0.6205 | 0.6237    | 0.6198 |
| 0.003         | 44.0  | 16720 | 4.0028          | 0.6198   | 0.6214 | 0.6263    | 0.6198 |
| 0.0005        | 45.0  | 17100 | 3.9621          | 0.6306   | 0.6315 | 0.6361    | 0.6306 |
| 0.0005        | 46.0  | 17480 | 3.9682          | 0.6306   | 0.6297 | 0.6298    | 0.6306 |
| 0.0003        | 47.0  | 17860 | 4.0103          | 0.6321   | 0.6310 | 0.6305    | 0.6321 |
| 0.0003        | 48.0  | 18240 | 3.9968          | 0.6321   | 0.6316 | 0.6317    | 0.6321 |
| 0.003         | 49.0  | 18620 | 3.9835          | 0.6298   | 0.6297 | 0.6304    | 0.6298 |
| 0.0005        | 50.0  | 19000 | 4.0012          | 0.6290   | 0.6291 | 0.6303    | 0.6290 |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0