justheuristic
commited on
Commit
•
5bd90d1
1
Parent(s):
0714fe7
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- phi-3
|
5 |
+
- phi-3-medium
|
6 |
+
- phi-3-medium-4k-instruct
|
7 |
+
- conversational
|
8 |
+
- text-generation-inference
|
9 |
+
pipeline_tag: text-generation
|
10 |
+
language:
|
11 |
+
- en
|
12 |
+
---
|
13 |
+
|
14 |
+
Official quantization of [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) using [PV-Tuning](https://arxiv.org/abs/2405.14852) on top of [AQLM](https://arxiv.org/abs/2401.06118).
|
15 |
+
|
16 |
+
For this quantization, we used 1 codebook of 16 bits for groups of 8 weights.
|
17 |
+
|
18 |
+
Results (0-shot `acc`):
|
19 |
+
|
20 |
+
Results:
|
21 |
+
| Model | Quantization | WikiText-2 | C4 | Model size, Gb |
|
22 |
+
|------|------|-------|------|------|
|
23 |
+
| [microsoft/Phi-3-medium-4k-instruct](https://huggingface.co/microsoft/Phi-3-medium-4k-instruct) | None | | | 27.9 |
|
24 |
+
| | [1x16g8 (2-bit, this model)](https://huggingface.co/ISTA-DASLab/Phi-3-medium-4k-instruct-AQLM-PV-2Bit-1x16-hf) | 5.18 | 8.56 | 4.2Gb |
|
25 |
+
| | [1x16g16 (1-bit, model link)](https://huggingface.co/ISTA-DASLab/Phi-3-medium-4k-instruct-AQLM-PV-1Bit-1x16-hf) | 7.42 | 10.40 | 2.7Gb |
|
26 |
+
|
27 |
+
|
28 |
+
In general, we always recommend the 2-bit models for best accuracy-size trade-offs. If tempted to use the 1-bit model, try a smaller model ,
|
29 |
+
e.g. Phi-3-**mini** quantized with AQLM+PV [(quantized model link)](https://huggingface.co/ISTA-DASLab/Phi-3-mini-4k-instruct-AQLM-PV-2Bit-1x16-hf) and compare the results, or check our [AQLM+PV collection](https://huggingface.co/collections/ISTA-DASLab/aqlmpv-66564dff5d84f00a893ba93f) for a more appropriate size.
|
30 |
+
|
31 |
+
|
32 |
+
To learn more about the inference, as well as the information on how to quantize models yourself, please refer to the [official GitHub repo](https://github.com/Vahe1994/AQLM).
|
33 |
+
The original code for PV-Tuning can be found in the [AQLM@pv-tuning](https://github.com/Vahe1994/AQLM/tree/pv-tuning) branch.
|