justheuristic commited on
Commit
5bd90d1
1 Parent(s): 0714fe7

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -0
README.md ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags:
4
+ - phi-3
5
+ - phi-3-medium
6
+ - phi-3-medium-4k-instruct
7
+ - conversational
8
+ - text-generation-inference
9
+ pipeline_tag: text-generation
10
+ language:
11
+ - en
12
+ ---
13
+
14
+ Official quantization of [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) using [PV-Tuning](https://arxiv.org/abs/2405.14852) on top of [AQLM](https://arxiv.org/abs/2401.06118).
15
+
16
+ For this quantization, we used 1 codebook of 16 bits for groups of 8 weights.
17
+
18
+ Results (0-shot `acc`):
19
+
20
+ Results:
21
+ | Model | Quantization | WikiText-2 | C4 | Model size, Gb |
22
+ |------|------|-------|------|------|
23
+ | [microsoft/Phi-3-medium-4k-instruct](https://huggingface.co/microsoft/Phi-3-medium-4k-instruct) | None | | | 27.9 |
24
+ | | [1x16g8 (2-bit, this model)](https://huggingface.co/ISTA-DASLab/Phi-3-medium-4k-instruct-AQLM-PV-2Bit-1x16-hf) | 5.18 | 8.56 | 4.2Gb |
25
+ | | [1x16g16 (1-bit, model link)](https://huggingface.co/ISTA-DASLab/Phi-3-medium-4k-instruct-AQLM-PV-1Bit-1x16-hf) | 7.42 | 10.40 | 2.7Gb |
26
+
27
+
28
+ In general, we always recommend the 2-bit models for best accuracy-size trade-offs. If tempted to use the 1-bit model, try a smaller model ,
29
+ e.g. Phi-3-**mini** quantized with AQLM+PV [(quantized model link)](https://huggingface.co/ISTA-DASLab/Phi-3-mini-4k-instruct-AQLM-PV-2Bit-1x16-hf) and compare the results, or check our [AQLM+PV collection](https://huggingface.co/collections/ISTA-DASLab/aqlmpv-66564dff5d84f00a893ba93f) for a more appropriate size.
30
+
31
+
32
+ To learn more about the inference, as well as the information on how to quantize models yourself, please refer to the [official GitHub repo](https://github.com/Vahe1994/AQLM).
33
+ The original code for PV-Tuning can be found in the [AQLM@pv-tuning](https://github.com/Vahe1994/AQLM/tree/pv-tuning) branch.