Iamvincent
commited on
Commit
•
0d18d10
1
Parent(s):
c29ad36
Initial commit
Browse files- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +95 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1577.41 +/- 233.33
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:134500c5264635e8d5ac9d64088bb03566e760558ecc51d7c158ad0946d7982a
|
3 |
+
size 181900
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f462735dee0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f462735df70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4627362040>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f46273620d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f4627362160>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f46273621f0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4627362280>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4627362310>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f46273623a0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4627362430>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f46273624c0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4627362550>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f4627360240>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
28
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
39 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"dtype": "float32",
|
41 |
+
"_shape": [
|
42 |
+
8
|
43 |
+
],
|
44 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
45 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
46 |
+
"bounded_below": "[ True True True True True True True True]",
|
47 |
+
"bounded_above": "[ True True True True True True True True]",
|
48 |
+
"_np_random": null
|
49 |
+
},
|
50 |
+
"n_envs": 4,
|
51 |
+
"num_timesteps": 2000040,
|
52 |
+
"_total_timesteps": 2000000,
|
53 |
+
"_num_timesteps_at_start": 0,
|
54 |
+
"seed": null,
|
55 |
+
"action_noise": null,
|
56 |
+
"start_time": 1674006939950527301,
|
57 |
+
"learning_rate": 0.0005,
|
58 |
+
"tensorboard_log": null,
|
59 |
+
"lr_schedule": {
|
60 |
+
":type:": "<class 'function'>",
|
61 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/QGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
62 |
+
},
|
63 |
+
"_last_obs": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOjm7z4AAIA/YyxDv9EBRD+4uD4/AACAPzk/oL0rsBU/52AFvwAAgD8W8VS//zA0vNVUBr+KNRA/fZxPv45pvjyUajC/AACAv42mU78AfNS9HepoP2J7RL8S+Us9jPIgPwAAgL8moB0/7JN+Plu0Fj9nfFI+iwlOP3BvDr5/rEo/AACAP25cxT5qdRc/SOYcP5pGSr/rhTS/B0m5PdUQET8/E5K+lAFwPiit2L4MRIi+y+GDvQAAgD+JVqO+AACAP3hQJj/kTBQ/acPEvgAAgD+9tDo/AACAv+yTfj4AAIC/y7QMPwAAgD/1vTK/VKwLPwAAgD8vj5K+AACAPwZDJz+L21W/mgvTPEPH0j6AJzc+NFSGvlX1LL8i+R2+sbeEvv6VGz8FNre8F48LvlzxCj8AAIA/H80vv+jjyb4AAIA/vbQ6PwAAgL/sk34+AACAvwAAgD8K/y2/vywqP+dXUj+Dh08/j+CkPmxHMD9M/gU/rIcqvwAAgL876HQ/L/4CP2Z5Hz4AAIC/EiRhPtYu4D4xquI+EnnuPQAAgL+am2g/C/ZCPgAAgL9erxQ+AACAP720Oj8AAIC/7JN+PgAAgL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
66 |
+
},
|
67 |
+
"_last_episode_starts": {
|
68 |
+
":type:": "<class 'numpy.ndarray'>",
|
69 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
70 |
+
},
|
71 |
+
"_last_original_obs": {
|
72 |
+
":type:": "<class 'numpy.ndarray'>",
|
73 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABiYku2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAEzISPgAAAAARSwHAAAAAABQMNbwAAAAA7U38PwAAAACFS8K9AAAAAIhs8j8AAAAA9nHwvQAAAADksv6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARsmhNAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOjf/T0AAAAA6xjnvwAAAABQtwo+AAAAAPYz3j8AAAAAMLt7PQAAAACVWe8/AAAAAFbyjT0AAAAAcqHhvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPJ0jLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAh3Ee9AAAAAAAU7r8AAAAA9GO+vQAAAADTmOE/AAAAAB3wiL0AAAAASS0BQAAAAABHuYs9AAAAADvU9L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADvowY3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAmIW8vQAAAAC+deq/AAAAACGivz0AAAAAiaD4PwAAAABvOqk8AAAAADJH/T8AAAAAbZwQvgAAAABeqfi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
74 |
+
},
|
75 |
+
"_episode_num": 0,
|
76 |
+
"use_sde": false,
|
77 |
+
"sde_sample_freq": -1,
|
78 |
+
"_current_progress_remaining": -1.999999999990898e-05,
|
79 |
+
"ep_info_buffer": {
|
80 |
+
":type:": "<class 'collections.deque'>",
|
81 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJrqas+3YtiMAWyUTegDjAF0lEdAqMbEpgCwKXV9lChoBkdAmjMsZk0782gHTegDaAhHQKjG2BWgezV1fZQoaAZHQJmMBtj0+TxoB03oA2gIR0CozfaxoqTbdX2UKGgGR0CaQBlfZ26kaAdN6ANoCEdAqNDXhZQpF3V9lChoBkdAm13WwFC9iGgHTegDaAhHQKjSKfQrtmd1fZQoaAZHQJmG+e+VTrFoB03oA2gIR0Co0j9mg8KYdX2UKGgGR0CWk+PBi1AraAdN6ANoCEdAqNlra24NJHV9lChoBkdAmouJe/pMYmgHTegDaAhHQKjcfWiDdxh1fZQoaAZHQJpEubG3nZFoB03oA2gIR0Co3csI3R5UdX2UKGgGR0CaBw78ejmCaAdN6ANoCEdAqN3eAbyYonV9lChoBkdAlhDRKtga32gHTegDaAhHQKjlDepn6Ed1fZQoaAZHQJkH++nIhhZoB03oA2gIR0Co6AhGH58CdX2UKGgGR0CYLymkWRA9aAdN6ANoCEdAqOlm8ujASHV9lChoBkdAmV7KL0jC52gHTegDaAhHQKjpfZ7HAAR1fZQoaAZHQJy+QtyxRl9oB03oA2gIR0Co8RrxiG34dX2UKGgGR0CbnB/hVENOaAdN6ANoCEdAqPQ8bedkKHV9lChoBkdAm+VZo0ygw2gHTegDaAhHQKj1loUzsQd1fZQoaAZHQJsuN3dKujhoB03oA2gIR0Co9a50bLlndX2UKGgGR0CZioynDR+jaAdN6ANoCEdAqP0LM7lq8HV9lChoBkdAmvq7655JLGgHTegDaAhHQKkAN6mfoRt1fZQoaAZHQJynUxwhnrZoB03oA2gIR0CpAbA6U7jldX2UKGgGR0CbdbGLDQ7caAdN6ANoCEdAqQHEhaC+UXV9lChoBkdAmurKwhW5pmgHTegDaAhHQKkIrYW+GoJ1fZQoaAZHQJrKKYLLIPtoB03oA2gIR0CpC5NwaR6odX2UKGgGR0Ca2xpsoDxLaAdN6ANoCEdAqQzVK9PDYXV9lChoBkdAmhR35nDiwWgHTegDaAhHQKkM521UlzF1fZQoaAZHQJvPVkkKNQ1oB03oA2gIR0CpFCLSVnmJdX2UKGgGR0CaPJQ79ycTaAdN6ANoCEdAqRdWTeO4onV9lChoBkdAmMhtMGorF2gHTegDaAhHQKkYsPvKEFp1fZQoaAZHQJtyHkU9IPNoB03oA2gIR0CpGMjArQPadX2UKGgGR0CV0IXyy2QXaAdN6ANoCEdAqSAtQZXMhXV9lChoBkdAmN26F/QSjGgHTegDaAhHQKkjTzasZHd1fZQoaAZHQJnrPuDzyz5oB03oA2gIR0CpJKxekYXPdX2UKGgGR0CIPyb961LKaAdN6ANoCEdAqSTBPVNHpnV9lChoBkdAmIluxfOUuGgHTegDaAhHQKkr1o1UEPl1fZQoaAZHQJuDZTzd1uBoB03oA2gIR0CpLrvboKUndX2UKGgGR0CZWJT7EYO2aAdN6ANoCEdAqTALHCGetnV9lChoBkdAmqt5gkTpPmgHTegDaAhHQKkwHwGW2PV1fZQoaAZHQJtJSn1nM+xoB03oA2gIR0CpNyFZ5iVjdX2UKGgGR0CZIHpCKJl8aAdN6ANoCEdAqToTLQokRnV9lChoBkdAm0kVum78N2gHTegDaAhHQKk7XxiG34N1fZQoaAZHQJkzSz2OAAhoB03oA2gIR0CpO3XLV4HHdX2UKGgGR0CajUZRsMy8aAdN6ANoCEdAqUK+R3eN1nV9lChoBkdAmV7bOmixmmgHTegDaAhHQKlFovnr6cl1fZQoaAZHQJZad/5LytpoB03oA2gIR0CpRvGjj7yhdX2UKGgGR0CYaZneSB9UaAdN6ANoCEdAqUcFLteD4HV9lChoBkdAmG93a8Hv+mgHTegDaAhHQKlOLekYXO51fZQoaAZHQJlhsbuMMqloB03oA2gIR0CpUS3rt3OfdX2UKGgGR0CWyHc5sCT2aAdN6ANoCEdAqVJ9k1/DtXV9lChoBkdAmWbt+9allGgHTegDaAhHQKlSkjcmBvt1fZQoaAZHQJlIUsRQJoloB03oA2gIR0CpWbiBf8dgdX2UKGgGR0CXdosHjZL7aAdN6ANoCEdAqVyjCemNznV9lChoBkdAmOKurIYFaGgHTegDaAhHQKld7WQwK0F1fZQoaAZHQJppnKNhmXhoB03oA2gIR0CpXgSI55qudX2UKGgGR0CX7508NhE0aAdN6ANoCEdAqWUbTrmhd3V9lChoBkdAmlzDqv/za2gHTegDaAhHQKloD1Tzd1x1fZQoaAZHQJrLnB0p3HJoB03oA2gIR0CpaV39zfaYdX2UKGgGR0CZ5Snp0OmSaAdN6ANoCEdAqWlxzvJA+3V9lChoBkdAm7MYu01IiGgHTegDaAhHQKlwe6J66at1fZQoaAZHQJsMFk6Lfk5oB03oA2gIR0Cpc192X9iudX2UKGgGR0CbhqZAprk9aAdN6ANoCEdAqXSqEvkBCHV9lChoBkdAnJ2dHtnf22gHTegDaAhHQKl0vmaH9FZ1fZQoaAZHQJJNfxpcophoB03oA2gIR0Cpe/GWD6FedX2UKGgGR0Cbie9alk6LaAdN6ANoCEdAqX7TlvIfbXV9lChoBkdAm6Xzo+wC82gHTegDaAhHQKmAGt03fhx1fZQoaAZHQJrxI6Oo5xRoB03oA2gIR0CpgDIYekpJdX2UKGgGR0CZj9diUgSwaAdN6ANoCEdAqYj1yJbdJ3V9lChoBkdAnCmStFKChGgHTegDaAhHQKmPRWMCLdh1fZQoaAZHQJsue5avA45oB03oA2gIR0Cpkc8BdUsGdX2UKGgGR0CcJ52NvOyFaAdN6ANoCEdAqZHx3iaRZHV9lChoBkdAmelaF7D2rWgHTegDaAhHQKmbFDVH4Gl1fZQoaAZHQJml0jQiRnxoB03oA2gIR0CpnfprtVrAdX2UKGgGR0CbnyzLfUF0aAdN6ANoCEdAqZ9Lkp7TlXV9lChoBkdAnGC2NJe3QWgHTegDaAhHQKmfXzCDVYp1fZQoaAZHQJrnoZtNzsBoB03oA2gIR0CppmZIYm9hdX2UKGgGR0CcVeyBTXJ6aAdN6ANoCEdAqalZEUj9oHV9lChoBkdAm09naBZpz2gHTegDaAhHQKmqmj4YaYN1fZQoaAZHQJqycIHC4z9oB03oA2gIR0CpqrDMV1wHdX2UKGgGR0CaEQ2jO9nLaAdN6ANoCEdAqbGsAcT8HnV9lChoBkdAmmGflZHNHGgHTegDaAhHQKm0k9Gqgh91fZQoaAZHQJoR5qKxcFBoB03oA2gIR0CpteK1gH/tdX2UKGgGR0CbcKXlKbrkaAdN6ANoCEdAqbX2hwl0HXV9lChoBkdAm09Yx+KCQWgHTegDaAhHQKm9QbVjI7x1fZQoaAZHQJpktrLyMDRoB03oA2gIR0CpwFjwhGH6dX2UKGgGR0CantvovBacaAdN6ANoCEdAqcGyFXaJynV9lChoBkdAmcdsbFS88WgHTegDaAhHQKnByKTjebd1fZQoaAZHQJpTzWZqmCRoB03oA2gIR0CpySGzKLbYdX2UKGgGR0Cc/mo73fygaAdN6ANoCEdAqcw36l+Ey3V9lChoBkdAnCM1bRnezmgHTegDaAhHQKnNjYEGJN11fZQoaAZHQJyXEG0NSZVoB03oA2gIR0CpzaSidrftdX2UKGgGR0CbvAE5yU9qaAdN6ANoCEdAqdT9si0OVnV9lChoBkdAnRbG+wkgOmgHTegDaAhHQKnYA3MINVl1fZQoaAZHQJxQJgx8D0VoB03oA2gIR0Cp2VweeWfLdX2UKGgGR0CeoZptaY/naAdN6ANoCEdAqdlwdIXj2nV9lChoBkdAmuygaNuLrGgHTegDaAhHQKngzp48lol1fZQoaAZHQJuYrPE87p5oB03oA2gIR0Cp477Ysd1ddX2UKGgGR0CbnW7ZnL7oaAdN6ANoCEdAqeUNpAUtZnV9lChoBkdAmqu8bWEsa2gHTegDaAhHQKnlISt/4It1fZQoaAZHQJkgWcH4XXRoB03oA2gIR0Cp7H37k4m1dX2UKGgGR0CY7/lFMIu5aAdN6ANoCEdAqe9uR7qptXVlLg=="
|
82 |
+
},
|
83 |
+
"ep_success_buffer": {
|
84 |
+
":type:": "<class 'collections.deque'>",
|
85 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
86 |
+
},
|
87 |
+
"_n_updates": 33334,
|
88 |
+
"n_steps": 15,
|
89 |
+
"gamma": 0.99,
|
90 |
+
"gae_lambda": 1.0,
|
91 |
+
"ent_coef": 0.0,
|
92 |
+
"vf_coef": 0.5,
|
93 |
+
"max_grad_norm": 0.5,
|
94 |
+
"normalize_advantage": true
|
95 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9cf57ffe1ec0b8eef432b7c327bcef899d1c0865231421bbbebb6e25eae36447
|
3 |
+
size 111344
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc31d2df7a540e6a5198ce01f4678136e1c0327af2b8c7d89dc9a936993dfbd6
|
3 |
+
size 54974
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f462735dee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f462735df70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4627362040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f46273620d0>", "_build": "<function ActorCriticPolicy._build at 0x7f4627362160>", "forward": "<function ActorCriticPolicy.forward at 0x7f46273621f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4627362280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4627362310>", "_predict": "<function ActorCriticPolicy._predict at 0x7f46273623a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4627362430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f46273624c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4627362550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4627360240>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000040, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674006939950527301, "learning_rate": 0.0005, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/QGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOjm7z4AAIA/YyxDv9EBRD+4uD4/AACAPzk/oL0rsBU/52AFvwAAgD8W8VS//zA0vNVUBr+KNRA/fZxPv45pvjyUajC/AACAv42mU78AfNS9HepoP2J7RL8S+Us9jPIgPwAAgL8moB0/7JN+Plu0Fj9nfFI+iwlOP3BvDr5/rEo/AACAP25cxT5qdRc/SOYcP5pGSr/rhTS/B0m5PdUQET8/E5K+lAFwPiit2L4MRIi+y+GDvQAAgD+JVqO+AACAP3hQJj/kTBQ/acPEvgAAgD+9tDo/AACAv+yTfj4AAIC/y7QMPwAAgD/1vTK/VKwLPwAAgD8vj5K+AACAPwZDJz+L21W/mgvTPEPH0j6AJzc+NFSGvlX1LL8i+R2+sbeEvv6VGz8FNre8F48LvlzxCj8AAIA/H80vv+jjyb4AAIA/vbQ6PwAAgL/sk34+AACAvwAAgD8K/y2/vywqP+dXUj+Dh08/j+CkPmxHMD9M/gU/rIcqvwAAgL876HQ/L/4CP2Z5Hz4AAIC/EiRhPtYu4D4xquI+EnnuPQAAgL+am2g/C/ZCPgAAgL9erxQ+AACAP720Oj8AAIC/7JN+PgAAgL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABiYku2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAEzISPgAAAAARSwHAAAAAABQMNbwAAAAA7U38PwAAAACFS8K9AAAAAIhs8j8AAAAA9nHwvQAAAADksv6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARsmhNAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOjf/T0AAAAA6xjnvwAAAABQtwo+AAAAAPYz3j8AAAAAMLt7PQAAAACVWe8/AAAAAFbyjT0AAAAAcqHhvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPJ0jLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAh3Ee9AAAAAAAU7r8AAAAA9GO+vQAAAADTmOE/AAAAAB3wiL0AAAAASS0BQAAAAABHuYs9AAAAADvU9L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADvowY3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAmIW8vQAAAAC+deq/AAAAACGivz0AAAAAiaD4PwAAAABvOqk8AAAAADJH/T8AAAAAbZwQvgAAAABeqfi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -1.999999999990898e-05, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJrqas+3YtiMAWyUTegDjAF0lEdAqMbEpgCwKXV9lChoBkdAmjMsZk0782gHTegDaAhHQKjG2BWgezV1fZQoaAZHQJmMBtj0+TxoB03oA2gIR0CozfaxoqTbdX2UKGgGR0CaQBlfZ26kaAdN6ANoCEdAqNDXhZQpF3V9lChoBkdAm13WwFC9iGgHTegDaAhHQKjSKfQrtmd1fZQoaAZHQJmG+e+VTrFoB03oA2gIR0Co0j9mg8KYdX2UKGgGR0CWk+PBi1AraAdN6ANoCEdAqNlra24NJHV9lChoBkdAmouJe/pMYmgHTegDaAhHQKjcfWiDdxh1fZQoaAZHQJpEubG3nZFoB03oA2gIR0Co3csI3R5UdX2UKGgGR0CaBw78ejmCaAdN6ANoCEdAqN3eAbyYonV9lChoBkdAlhDRKtga32gHTegDaAhHQKjlDepn6Ed1fZQoaAZHQJkH++nIhhZoB03oA2gIR0Co6AhGH58CdX2UKGgGR0CYLymkWRA9aAdN6ANoCEdAqOlm8ujASHV9lChoBkdAmV7KL0jC52gHTegDaAhHQKjpfZ7HAAR1fZQoaAZHQJy+QtyxRl9oB03oA2gIR0Co8RrxiG34dX2UKGgGR0CbnB/hVENOaAdN6ANoCEdAqPQ8bedkKHV9lChoBkdAm+VZo0ygw2gHTegDaAhHQKj1loUzsQd1fZQoaAZHQJsuN3dKujhoB03oA2gIR0Co9a50bLlndX2UKGgGR0CZioynDR+jaAdN6ANoCEdAqP0LM7lq8HV9lChoBkdAmvq7655JLGgHTegDaAhHQKkAN6mfoRt1fZQoaAZHQJynUxwhnrZoB03oA2gIR0CpAbA6U7jldX2UKGgGR0CbdbGLDQ7caAdN6ANoCEdAqQHEhaC+UXV9lChoBkdAmurKwhW5pmgHTegDaAhHQKkIrYW+GoJ1fZQoaAZHQJrKKYLLIPtoB03oA2gIR0CpC5NwaR6odX2UKGgGR0Ca2xpsoDxLaAdN6ANoCEdAqQzVK9PDYXV9lChoBkdAmhR35nDiwWgHTegDaAhHQKkM521UlzF1fZQoaAZHQJvPVkkKNQ1oB03oA2gIR0CpFCLSVnmJdX2UKGgGR0CaPJQ79ycTaAdN6ANoCEdAqRdWTeO4onV9lChoBkdAmMhtMGorF2gHTegDaAhHQKkYsPvKEFp1fZQoaAZHQJtyHkU9IPNoB03oA2gIR0CpGMjArQPadX2UKGgGR0CV0IXyy2QXaAdN6ANoCEdAqSAtQZXMhXV9lChoBkdAmN26F/QSjGgHTegDaAhHQKkjTzasZHd1fZQoaAZHQJnrPuDzyz5oB03oA2gIR0CpJKxekYXPdX2UKGgGR0CIPyb961LKaAdN6ANoCEdAqSTBPVNHpnV9lChoBkdAmIluxfOUuGgHTegDaAhHQKkr1o1UEPl1fZQoaAZHQJuDZTzd1uBoB03oA2gIR0CpLrvboKUndX2UKGgGR0CZWJT7EYO2aAdN6ANoCEdAqTALHCGetnV9lChoBkdAmqt5gkTpPmgHTegDaAhHQKkwHwGW2PV1fZQoaAZHQJtJSn1nM+xoB03oA2gIR0CpNyFZ5iVjdX2UKGgGR0CZIHpCKJl8aAdN6ANoCEdAqToTLQokRnV9lChoBkdAm0kVum78N2gHTegDaAhHQKk7XxiG34N1fZQoaAZHQJkzSz2OAAhoB03oA2gIR0CpO3XLV4HHdX2UKGgGR0CajUZRsMy8aAdN6ANoCEdAqUK+R3eN1nV9lChoBkdAmV7bOmixmmgHTegDaAhHQKlFovnr6cl1fZQoaAZHQJZad/5LytpoB03oA2gIR0CpRvGjj7yhdX2UKGgGR0CYaZneSB9UaAdN6ANoCEdAqUcFLteD4HV9lChoBkdAmG93a8Hv+mgHTegDaAhHQKlOLekYXO51fZQoaAZHQJlhsbuMMqloB03oA2gIR0CpUS3rt3OfdX2UKGgGR0CWyHc5sCT2aAdN6ANoCEdAqVJ9k1/DtXV9lChoBkdAmWbt+9allGgHTegDaAhHQKlSkjcmBvt1fZQoaAZHQJlIUsRQJoloB03oA2gIR0CpWbiBf8dgdX2UKGgGR0CXdosHjZL7aAdN6ANoCEdAqVyjCemNznV9lChoBkdAmOKurIYFaGgHTegDaAhHQKld7WQwK0F1fZQoaAZHQJppnKNhmXhoB03oA2gIR0CpXgSI55qudX2UKGgGR0CX7508NhE0aAdN6ANoCEdAqWUbTrmhd3V9lChoBkdAmlzDqv/za2gHTegDaAhHQKloD1Tzd1x1fZQoaAZHQJrLnB0p3HJoB03oA2gIR0CpaV39zfaYdX2UKGgGR0CZ5Snp0OmSaAdN6ANoCEdAqWlxzvJA+3V9lChoBkdAm7MYu01IiGgHTegDaAhHQKlwe6J66at1fZQoaAZHQJsMFk6Lfk5oB03oA2gIR0Cpc192X9iudX2UKGgGR0CbhqZAprk9aAdN6ANoCEdAqXSqEvkBCHV9lChoBkdAnJ2dHtnf22gHTegDaAhHQKl0vmaH9FZ1fZQoaAZHQJJNfxpcophoB03oA2gIR0Cpe/GWD6FedX2UKGgGR0Cbie9alk6LaAdN6ANoCEdAqX7TlvIfbXV9lChoBkdAm6Xzo+wC82gHTegDaAhHQKmAGt03fhx1fZQoaAZHQJrxI6Oo5xRoB03oA2gIR0CpgDIYekpJdX2UKGgGR0CZj9diUgSwaAdN6ANoCEdAqYj1yJbdJ3V9lChoBkdAnCmStFKChGgHTegDaAhHQKmPRWMCLdh1fZQoaAZHQJsue5avA45oB03oA2gIR0Cpkc8BdUsGdX2UKGgGR0CcJ52NvOyFaAdN6ANoCEdAqZHx3iaRZHV9lChoBkdAmelaF7D2rWgHTegDaAhHQKmbFDVH4Gl1fZQoaAZHQJml0jQiRnxoB03oA2gIR0CpnfprtVrAdX2UKGgGR0CbnyzLfUF0aAdN6ANoCEdAqZ9Lkp7TlXV9lChoBkdAnGC2NJe3QWgHTegDaAhHQKmfXzCDVYp1fZQoaAZHQJrnoZtNzsBoB03oA2gIR0CppmZIYm9hdX2UKGgGR0CcVeyBTXJ6aAdN6ANoCEdAqalZEUj9oHV9lChoBkdAm09naBZpz2gHTegDaAhHQKmqmj4YaYN1fZQoaAZHQJqycIHC4z9oB03oA2gIR0CpqrDMV1wHdX2UKGgGR0CaEQ2jO9nLaAdN6ANoCEdAqbGsAcT8HnV9lChoBkdAmmGflZHNHGgHTegDaAhHQKm0k9Gqgh91fZQoaAZHQJoR5qKxcFBoB03oA2gIR0CpteK1gH/tdX2UKGgGR0CbcKXlKbrkaAdN6ANoCEdAqbX2hwl0HXV9lChoBkdAm09Yx+KCQWgHTegDaAhHQKm9QbVjI7x1fZQoaAZHQJpktrLyMDRoB03oA2gIR0CpwFjwhGH6dX2UKGgGR0CantvovBacaAdN6ANoCEdAqcGyFXaJynV9lChoBkdAmcdsbFS88WgHTegDaAhHQKnByKTjebd1fZQoaAZHQJpTzWZqmCRoB03oA2gIR0CpySGzKLbYdX2UKGgGR0Cc/mo73fygaAdN6ANoCEdAqcw36l+Ey3V9lChoBkdAnCM1bRnezmgHTegDaAhHQKnNjYEGJN11fZQoaAZHQJyXEG0NSZVoB03oA2gIR0CpzaSidrftdX2UKGgGR0CbvAE5yU9qaAdN6ANoCEdAqdT9si0OVnV9lChoBkdAnRbG+wkgOmgHTegDaAhHQKnYA3MINVl1fZQoaAZHQJxQJgx8D0VoB03oA2gIR0Cp2VweeWfLdX2UKGgGR0CeoZptaY/naAdN6ANoCEdAqdlwdIXj2nV9lChoBkdAmuygaNuLrGgHTegDaAhHQKngzp48lol1fZQoaAZHQJuYrPE87p5oB03oA2gIR0Cp477Ysd1ddX2UKGgGR0CbnW7ZnL7oaAdN6ANoCEdAqeUNpAUtZnV9lChoBkdAmqu8bWEsa2gHTegDaAhHQKnlISt/4It1fZQoaAZHQJkgWcH4XXRoB03oA2gIR0Cp7H37k4m1dX2UKGgGR0CY7/lFMIu5aAdN6ANoCEdAqe9uR7qptXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 33334, "n_steps": 15, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": true, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (874 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1577.4086267231498, "std_reward": 233.32884340024512, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-18T02:51:43.990016"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f347383abf3da90f2ac7e8df8603d799b565cff50b5422aef5f99e202f0e5f1
|
3 |
+
size 2521
|