Iamvincent
commited on
Commit
·
937633f
1
Parent(s):
974b9a0
last commit
Browse files- .gitattributes +1 -0
- README.md +1 -1
- a2c-AntBulletEnv-v0.zip +2 -2
- a2c-AntBulletEnv-v0/data +21 -21
- a2c-AntBulletEnv-v0/policy.optimizer.pth +1 -1
- a2c-AntBulletEnv-v0/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 2597.77 +/- 98.03
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-AntBulletEnv-v0.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7a0376d373f741eb4f636d8b4897dbe150d78be74c3ca87d28ac1ea8a18ed071
|
3 |
+
size 181881
|
a2c-AntBulletEnv-v0/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
@@ -53,16 +53,16 @@
|
|
53 |
"_num_timesteps_at_start": 0,
|
54 |
"seed": null,
|
55 |
"action_noise": null,
|
56 |
-
"start_time":
|
57 |
-
"learning_rate": 0.
|
58 |
"tensorboard_log": null,
|
59 |
"lr_schedule": {
|
60 |
":type:": "<class 'function'>",
|
61 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/
|
62 |
},
|
63 |
"_last_obs": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
65 |
-
":serialized:": "
|
66 |
},
|
67 |
"_last_episode_starts": {
|
68 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -70,7 +70,7 @@
|
|
70 |
},
|
71 |
"_last_original_obs": {
|
72 |
":type:": "<class 'numpy.ndarray'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"_episode_num": 0,
|
76 |
"use_sde": false,
|
@@ -78,14 +78,14 @@
|
|
78 |
"_current_progress_remaining": 0.0,
|
79 |
"ep_info_buffer": {
|
80 |
":type:": "<class 'collections.deque'>",
|
81 |
-
":serialized:": "
|
82 |
},
|
83 |
"ep_success_buffer": {
|
84 |
":type:": "<class 'collections.deque'>",
|
85 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
86 |
},
|
87 |
-
"_n_updates":
|
88 |
-
"n_steps":
|
89 |
"gamma": 0.99,
|
90 |
"gae_lambda": 1.0,
|
91 |
"ent_coef": 0.0,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f42c3e4f310>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f42c3e4f3a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f42c3e4f430>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f42c3e4f4c0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f42c3e4f550>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f42c3e4f5e0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f42c3e4f670>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f42c3e4f700>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f42c3e4f790>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f42c3e4f820>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f42c3e4f8b0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f42c3e4f940>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f42c3e4a810>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
53 |
"_num_timesteps_at_start": 0,
|
54 |
"seed": null,
|
55 |
"action_noise": null,
|
56 |
+
"start_time": 1674042929307746659,
|
57 |
+
"learning_rate": 0.0005,
|
58 |
"tensorboard_log": null,
|
59 |
"lr_schedule": {
|
60 |
":type:": "<class 'function'>",
|
61 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/QGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
62 |
},
|
63 |
"_last_obs": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAH4lmz7+cqA/T7wiPFR3vz9yhhU+pCCIP2yiJL7ssTu/h89Vv+f4IL+qnVC/iVwQPVjkBj7yzbA/Ck7+PizTRj/oXl+9FruOP2eotT5z/tS+Y/WIvgzey79P0ZU/UQ65Pu/Ah79Qwx4/WOz+PneHgj8y9w0+iXI8PG6OxT5/z6A/NcpFvxEs/b7MNJE+NxwCPughSD/7/Ia+YTH7PqHZCj+7PKu/xo8KPrVSkb6Z9s6/OwJBv86c4b4/bu09M+gCQHPn8r3u9x8/XLmAvwGadD3fYHE/UWXOv1js/j4oCnu/WdFpP4EPkzya0cU+rREQP6dPyr9CBiC/h3mCP+DnJr+HPkA/yR4gv03H1j/xTIa96zKkv2oDAj/m8ba/7iBYwICDJL+ImpA8CGrxPvNtZD80TqW+zZS6P0gAcL86Edw+32BxP1Flzr9Y7P4+KAp7v3jVIj9U9TI/VayYPgWoPT9mkOY+HpocP988ET/Unmy/02JKP202E789Ca4/y8yPPudbrL+4CXg9OQR8v8DXgb/ko3W9icj6vpAl8T5Eej8/UUQAv/LaeT40iYO/PsUgP99gcT9RZc6/WOz+PigKe7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
66 |
},
|
67 |
"_last_episode_starts": {
|
68 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
70 |
},
|
71 |
"_last_original_obs": {
|
72 |
":type:": "<class 'numpy.ndarray'>",
|
73 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABaq9G2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAG8bgPQAAAABUb+i/AAAAALzRIb0AAAAAcQT0PwAAAABr3FA8AAAAAH+S9z8AAAAAU8IEPgAAAACOkv+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+9oMNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOeEBb4AAAAAtEv6vwAAAAA3T5M7AAAAABlO5z8AAAAACS3GvQAAAAAfy/I/AAAAAB8uTb0AAAAAESHkvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGmdHzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDcgAe+AAAAAMVt7r8AAAAAwzmGvQAAAADb+gBAAAAAAK+ctTwAAAAAXMfYPwAAAADadsu7AAAAAJ486L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABvphK2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAkgcmPAAAAACfTeK/AAAAAIgTsDwAAAAAtwPcPwAAAACGAL69AAAAAH7U/D8AAAAAz3QuPAAAAACTtvK/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
74 |
},
|
75 |
"_episode_num": 0,
|
76 |
"use_sde": false,
|
|
|
78 |
"_current_progress_remaining": 0.0,
|
79 |
"ep_info_buffer": {
|
80 |
":type:": "<class 'collections.deque'>",
|
81 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKKydGpda+yMAWyUTegDjAF0lEdApIl50MgEEHV9lChoBkdAo6KikuYhMmgHTegDaAhHQKSLnp0wJw91fZQoaAZHQJbU/K6nR9hoB03oA2gIR0CkjqIGpuMudX2UKGgGR0CkEcJBHCoCaAdN6ANoCEdApI9TwhGH6HV9lChoBkdApEHRlnRLK2gHTegDaAhHQKST4DqW1MN1fZQoaAZHQKHCX+H8CPpoB03oA2gIR0Cklfh4lhPTdX2UKGgGR0CjpYUKArhBaAdN6ANoCEdApJj8AWBSUHV9lChoBkdAo63UGxD9fmgHTegDaAhHQKSZrSZ0CBB1fZQoaAZHQKMjS9X9zfdoB03oA2gIR0CknlQ9q1w6dX2UKGgGR0CjP28fvF3qaAdN6ANoCEdApKC4D9wWFnV9lChoBkdApI2dK5Cng2gHTegDaAhHQKSjyf5DZ151fZQoaAZHQKTtyXRgJC1oB03oA2gIR0CkpHnvlU6xdX2UKGgGR0Ch2HtwaR6oaAdN6ANoCEdApKkdDSgGr3V9lChoBkdAkGOUovzvqmgHTegDaAhHQKSrR58jRlZ1fZQoaAZHQKTnXoL5RCRoB03oA2gIR0CkrlY4Qz1sdX2UKGgGR0CiBcxJ/XoUaAdN6ANoCEdApK8AUQCjlHV9lChoBkdAozUryz5XVGgHTegDaAhHQKSzmQWepXJ1fZQoaAZHQKWFhhG6PKdoB03oA2gIR0CktcdGqgh9dX2UKGgGR0CikLK0D2alaAdN6ANoCEdApLjCgsbvPXV9lChoBkdAolNdPLxI8WgHTegDaAhHQKS5biqhlDp1fZQoaAZHQKHNVE7W/ahoB03oA2gIR0CkvgCwr1/UdX2UKGgGR0Ci0D3TVlPKaAdN6ANoCEdApMAoJzDGcXV9lChoBkdAo6U7e40/GGgHTegDaAhHQKTDKlsP8Q91fZQoaAZHQKK8QqPOpsJoB03oA2gIR0Ckw+R9gF5fdX2UKGgGR0Cjj0GKIi1RaAdN6ANoCEdApMhoEOiFkHV9lChoBkdApFdiFbmlqWgHTegDaAhHQKTKgL+glGB1fZQoaAZHQKH2lORDCxhoB03oA2gIR0CkzX/O+qR2dX2UKGgGR0CjVZhnBciXaAdN6ANoCEdApM47yMDOknV9lChoBkdAo7f1CZ4Oc2gHTegDaAhHQKTS2mEXcg11fZQoaAZHQKQjLSjxkNFoB03oA2gIR0Ck1QCmVJL/dX2UKGgGR0CkAzI/zJ6qaAdN6ANoCEdApNgKfapPynV9lChoBkdAorM0KG+K0mgHTegDaAhHQKTYv9E1EVp1fZQoaAZHQKHOZlJYkmhoB03oA2gIR0Ck3W1+7UXpdX2UKGgGR0Cj5hubqhUSaAdN6ANoCEdApN+nLeQ+2XV9lChoBkdAozf62rn1WmgHTegDaAhHQKTiyIKtxMp1fZQoaAZHQKSUB2wFC9hoB03oA2gIR0Ck44T2OAAidX2UKGgGR0Cj7vrnLaEjaAdN6ANoCEdApOgezByjpXV9lChoBkdAov+GbG3nZGgHTegDaAhHQKTqSy5Zr591fZQoaAZHQKSdhLqUu+RoB03oA2gIR0Ck7U9LQHAzdX2UKGgGR0Cjr4bx/d6+aAdN6ANoCEdApO398/lhgHV9lChoBkdAo1zweeWfLGgHTegDaAhHQKTymTJQtSR1fZQoaAZHQKL44/OdGy5oB03oA2gIR0Ck9LcJUo8ZdX2UKGgGR0ChnIYKYzBRaAdN6ANoCEdApPe9KbrkbXV9lChoBkdAosm2WBz3iGgHTegDaAhHQKT4c6MBIWh1fZQoaAZHQKKqARW912doB03oA2gIR0Ck/RJM6BAfdX2UKGgGR0CitUbJOnEVaAdN6ANoCEdApP83e1rqMXV9lChoBkdAo0ippztCzGgHTegDaAhHQKUCPUCJXQt1fZQoaAZHQKFOpZRsMy9oB03oA2gIR0ClAunlfZ27dX2UKGgGR0CiyvNQsPJ8aAdN6ANoCEdApQdvRTjvNXV9lChoBkdApCv4KQaJh2gHTegDaAhHQKUJi2rn1Wd1fZQoaAZHQKHT3/giu+1oB03oA2gIR0ClDIKPwNLEdX2UKGgGR0CkMDNC7btaaAdN6ANoCEdApQ04GOdXk3V9lChoBkdApLco9eQdS2gHTegDaAhHQKUR8fvnbIt1fZQoaAZHQKObrTPSlWRoB03oA2gIR0ClFCAOjIq9dX2UKGgGR0CkcQzZpSJkaAdN6ANoCEdApRcoe/5+IHV9lChoBkdAoKN1p48lomgHTegDaAhHQKUX65U96kZ1fZQoaAZHQKPZgXHBDXxoB03oA2gIR0ClHM+fAbhndX2UKGgGR0ClR/7l7tzCaAdN6ANoCEdApR7oUahpQHV9lChoBkdAowUED4gzQGgHTegDaAhHQKUh+WGh24d1fZQoaAZHQKNzJ1wo9cNoB03oA2gIR0ClIqb3fyf+dX2UKGgGR0Ckw5zo+wC9aAdN6ANoCEdApSc3W6K+BnV9lChoBkdApI6ypWFN+WgHTegDaAhHQKUpU1VHWjJ1fZQoaAZHQKE7R029+PRoB03oA2gIR0ClLE3/HYHxdX2UKGgGR0Ck0eMW43FUaAdN6ANoCEdApS0KY7aIvnV9lChoBkdApLCYYFaB7WgHTegDaAhHQKUxk5nUUfx1fZQoaAZHQKS+YW9lEqloB03oA2gIR0ClM7R7qptKdX2UKGgGR0Ckquos7MgVaAdN6ANoCEdApTbekFfReHV9lChoBkdApEgASQHRkWgHTegDaAhHQKU3k5+Ytxx1fZQoaAZHQKSLqGvfTCtoB03oA2gIR0ClPEZjQRf4dX2UKGgGR0CkWiwnx8UmaAdN6ANoCEdApT5rvTgEU3V9lChoBkdApIBeBczIm2gHTegDaAhHQKVBcNtIkJN1fZQoaAZHQKNGOTQE6ktoB03oA2gIR0ClQiy0rsjWdX2UKGgGR0Ck9/u5rgwXaAdN6ANoCEdApUa+mixmkHV9lChoBkdApFLsejmCAmgHTegDaAhHQKVI1q9oN/h1fZQoaAZHQKRgTqQA+6loB03oA2gIR0ClS9cwQDmsdX2UKGgGR0ClIpDn3cpLaAdN6ANoCEdApUyRPKuB+XV9lChoBkdApTcUYbbUPWgHTegDaAhHQKVRTTUiILx1fZQoaAZHQKTYqgQpWmxoB03oA2gIR0ClU4mY0EX+dX2UKGgGR0ClJFrSeAd5aAdN6ANoCEdApVamGCZnc3V9lChoBkdApZafFLnLaGgHTegDaAhHQKVXVuGbkOt1fZQoaAZHQKUE5O0LMLZoB03oA2gIR0ClXDQZOzppdX2UKGgGR0Chtp2rfcesaAdN6ANoCEdApV5dvGZNPHV9lChoBkdAo+bOK0lZ5mgHTegDaAhHQKVhdKujh1l1fZQoaAZHQKBuDJW/8EVoB03oA2gIR0ClYjCfHxSYdX2UKGgGR0CkIjf8dgfEaAdN6ANoCEdApWb3EETxonV9lChoBkdAoCcINqgyumgHTegDaAhHQKVpJgssg+11fZQoaAZHQKKNoVkc0choB03oA2gIR0ClbDspobn6dX2UKGgGR0Cj4+M1TBInaAdN6ANoCEdApWzy9K28ZnV9lChoBkdAo3+oM+eOGWgHTegDaAhHQKVxjUrCm/F1fZQoaAZHQKPs++Eh7mdoB03oA2gIR0Clc7lZPl+3dX2UKGgGR0ChctK0+kgwaAdN6ANoCEdApXbcLlV94XV9lChoBkdAo810xqO94GgHTegDaAhHQKV3kynk1dh1fZQoaAZHQKVu4RJVbRpoB03oA2gIR0ClfDZmRNh3dX2UKGgGR0CjZLmKhtcfaAdN6ANoCEdApX5cDB/I83V9lChoBkdAo00gKD0162gHTegDaAhHQKWBZrtVrAR1fZQoaAZHQKD/6Ac1fmdoB03oA2gIR0ClghfuTibVdX2UKGgGR0Cka2DzI3iraAdN6ANoCEdApYasefZmI3V9lChoBkdAo2xgC6pYLmgHTegDaAhHQKWIzhcZ9/l1fZQoaAZHQKNf+DwH7gtoB03oA2gIR0Cli9VUVBUrdX2UKGgGR0CkYuxpUPxyaAdN6ANoCEdApYyD4DcM3XVlLg=="
|
82 |
},
|
83 |
"ep_success_buffer": {
|
84 |
":type:": "<class 'collections.deque'>",
|
85 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
86 |
},
|
87 |
+
"_n_updates": 25000,
|
88 |
+
"n_steps": 20,
|
89 |
"gamma": 0.99,
|
90 |
"gae_lambda": 1.0,
|
91 |
"ent_coef": 0.0,
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 111344
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f4b71378e1482f50eaacbeb454e379adeeff4e4901a66d8c02a4162f5b4ce5c
|
3 |
size 111344
|
a2c-AntBulletEnv-v0/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 54974
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6bec2dc5be906eaa41b2b6d865d980539a15334865c625abbaa5c8aae80aa67b
|
3 |
size 54974
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f462735dee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f462735df70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4627362040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f46273620d0>", "_build": "<function ActorCriticPolicy._build at 0x7f4627362160>", "forward": "<function ActorCriticPolicy.forward at 0x7f46273621f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4627362280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4627362310>", "_predict": "<function ActorCriticPolicy._predict at 0x7f46273623a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4627362430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f46273624c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4627362550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4627360240>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674010426159928435, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADzhcr+fGao/lmF7v/DKgL/H/na+LWK6Pm3uer7YhfE/ZJ4av5KFET6NA52/ykKIvL9ssD/TZay9P74+vu9kkD27dERAzaNav6+9OL9nSuk+zXypPwG04b6jEJ2/6IGNPpXMR78Chic/jF96PvoWGj+CfUe/iL26vz/5Kj+on5G/xbuhvs+lDb5Dtdi+ZhrePR4QvT/ERsM/ZuG4vdt0K7+ooY2/zEgqPqLZnj7aqg7AOD2gP1vd4z/17+Y+CxOtvrrOXT4xdUk//K+KvufXxD40AaQ/OprDv4xfej76Fho/2Kcnv9LhOj8fT5y9Tm7PvQKf7jypGfy+UYeovhcO+z8yC3m/QSjrvrL7Z79wGqe/wwUqPYQ8Qr1ZjcS+ry5hvZk04T/Ln1I80z7Uv/VJMcDytHG/PVCNvUW9er9OhPC9lcxHvwKGJz+MX3o++hYaP5B/iz7Msg6/eZ4lP+imE7860ri+NspnP+v/sb7dhje/IHtVP5XbRsBiy6o/P3cPPmU9gD+agt6/qmEVPzpCsL8f1kk/p2EswD64Qz5QG5m/etpMv+igo7+Kg/M+r64UvzQBpD8Chic/jF96PvoWGj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADhIbG2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAoG/6PQAAAABLYP2/AAAAABG8CT0AAAAA8z0BQAAAAACkLvK9AAAAANNH7T8AAAAAwtrCPAAAAADMs/O/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVEmQNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCJkHL0AAAAA11jlvwAAAACYDFQ8AAAAACCv8z8AAAAAIPh+PQAAAAA9tfs/AAAAADSGm70AAAAAT2P9vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJdjP7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDq5vm9AAAAAOl3/L8AAAAAx8M8vQAAAAAtRfE/AAAAAIqdrb0AAAAACcT8PwAAAAADuOM9AAAAAJqvAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACnqLO1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAkFsLPgAAAAB++e+/AAAAAOcIx7wAAAAAdO7sPwAAAADRmtM9AAAAAAva7z8AAAAATdHSOgAAAAC4c9m/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJiBV8KG+K2MAWyUTegDjAF0lEdApq6SRhc7hnV9lChoBkdAl4MqGQCCBmgHTegDaAhHQKa1245Lh751fZQoaAZHQJbAcVN5+phoB03oA2gIR0CmteSb6P8ydX2UKGgGR0CWAiVS4vvjaAdN6ANoCEdAprZLnxJ/X3V9lChoBkdAmMf+SKWLP2gHTegDaAhHQKa54A4GUwB1fZQoaAZHQJQfyAy2x6hoB03oA2gIR0CmwZCGvfTDdX2UKGgGR0CSpUU1AJLNaAdN6ANoCEdApsGYq3EycnV9lChoBkdAlUx00Nz8xmgHTegDaAhHQKbCAwFkhA51fZQoaAZHQJO8fN8ma6VoB03oA2gIR0CmxXoDPnjidX2UKGgGR0CKPswiaAnVaAdN6ANoCEdAps0XavicXnV9lChoBkdAi5Oeg13t8mgHTegDaAhHQKbNH6w+t8x1fZQoaAZHQJFgPYGt6oloB03oA2gIR0CmzYK9XcQAdX2UKGgGR0CMPOkfs/puaAdN6ANoCEdAptD1C1JDmnV9lChoBkdAiH1xTbWVeWgHTegDaAhHQKbYuOMl1KZ1fZQoaAZHQIhpqPXCj1xoB03oA2gIR0Cm2MEcbR4RdX2UKGgGR0CN0A4x1xKhaAdN6ANoCEdAptkoAMlTnHV9lChoBkdAiVZyOq//N2gHTegDaAhHQKbcrSpiqhl1fZQoaAZHQIxfFy1eBxxoB03oA2gIR0Cm5G0ALiMpdX2UKGgGR0CNSodNFjNIaAdN6ANoCEdApuR2FFlTWHV9lChoBkdAhyCcU21lXmgHTegDaAhHQKbk3vG6wt91fZQoaAZHQIkRp4Uvf0poB03oA2gIR0Cm6IGbkOqedX2UKGgGR0CJRKYP5HmSaAdN6ANoCEdApvBkXP7emHV9lChoBkdAhGMSauwHJWgHTegDaAhHQKbwbIqbz9V1fZQoaAZHQITSqFEiMYNoB03oA2gIR0Cm8M3K0UoKdX2UKGgGR0CKN5AvcrRTaAdN6ANoCEdApvReOsDGLnV9lChoBkdAhVdNnwob42gHTegDaAhHQKb8dVHWjGl1fZQoaAZHQIbVkcOskptoB03oA2gIR0Cm/H6+FlCkdX2UKGgGR0CIEDWEK3NLaAdN6ANoCEdApvzp6rvLHXV9lChoBkdAh1ynK4hEB2gHTegDaAhHQKcAnND+irV1fZQoaAZHQIGxnbCaZx9oB03oA2gIR0CnCGeiBXjmdX2UKGgGR0CCkfDlYEGJaAdN6ANoCEdApwhwvSMLnnV9lChoBkdAhV9YKIBRymgHTegDaAhHQKcI1lU6xPh1fZQoaAZHQIcGJYPoV21oB03oA2gIR0CnDG3iBGx2dX2UKGgGR0CCfUeJ53TvaAdN6ANoCEdApxQprN4Z/HV9lChoBkdAg2BNmDlHSWgHTegDaAhHQKcUNX9zfaZ1fZQoaAZHQIGyFGd7OVxoB03oA2gIR0CnFNUrbxmTdX2UKGgGR0B9VIpPRAryaAdN6ANoCEdApxpr/Khcq3V9lChoBkdAf2UZv1lGw2gHTegDaAhHQKcjwnssxwh1fZQoaAZHQIHp8sWfseJoB03oA2gIR0CnI8umixmkdX2UKGgGR0B4DRVIZqEfaAdN6ANoCEdApyQ3LPldT3V9lChoBkdAfGhj3225QWgHTegDaAhHQKcn+xVQyh11fZQoaAZHQIAKM0+C9RJoB03oA2gIR0CnM4dsi0OWdX2UKGgGR0B1Z8Bo24usaAdN6ANoCEdApzOPpljEvXV9lChoBkdAeDs6BAfMfWgHTegDaAhHQKcz9WYnfEZ1fZQoaAZHQHnGofW+XZ5oB03oA2gIR0CnN3sXzlLfdX2UKGgGR0CCLLVtGd7OaAdN6ANoCEdApz9M+xGDtnV9lChoBkdAeY5vttygf2gHTegDaAhHQKc/VeIEbHZ1fZQoaAZHQIHAVCZ4Oc5oB03oA2gIR0CnP8DnFHawdX2UKGgGR0CA2knrIHTraAdN6ANoCEdAp0NzxqfvnnV9lChoBkdAeiaa9bor4GgHTegDaAhHQKdLLS0BwMp1fZQoaAZHQHB62q94/u9oB03oA2gIR0CnSzWWQfZFdX2UKGgGR0B/E67QLNOeaAdN6ANoCEdAp0udiMHbAXV9lChoBkdAdKaiay8jA2gHTegDaAhHQKdPHN2TxG51fZQoaAZHQHrzobGWD6FoB03oA2gIR0CnVv31SOzZdX2UKGgGR0B8o0awUxmDaAdN6ANoCEdAp1cGkJrtV3V9lChoBkdAfeHGNrCWNWgHTegDaAhHQKdXd5FgDzR1fZQoaAZHQHgqJFCswL5oB03oA2gIR0CnWxp4bCJodX2UKGgGR0CCEhWuHN5daAdN6ANoCEdAp2KtBfKISHV9lChoBkdAfnRX5nDiwWgHTegDaAhHQKditasZHd51fZQoaAZHQID01w5vLoxoB03oA2gIR0CnYxghje9BdX2UKGgGR0B7/h1vES/TaAdN6ANoCEdAp2aPIGQjlnV9lChoBkdAhQ/nFHavimgHTegDaAhHQKdt+Mx46fd1fZQoaAZHQIVrrZ6D5CZoB03oA2gIR0CnbgEMTewcdX2UKGgGR0CFyE40/GEPaAdN6ANoCEdAp25l1dPcjHV9lChoBkdAgplIvJzT4WgHTegDaAhHQKdx4wLVnVZ1fZQoaAZHQINfgD3dsSFoB03oA2gIR0CneXvmYBvKdX2UKGgGR0B8cSryUcGUaAdN6ANoCEdAp3mD/Khcq3V9lChoBkdAfYN1SOzY3GgHTegDaAhHQKd55yuIRAd1fZQoaAZHQIBraGN70FtoB03oA2gIR0CnfVg2Q4jsdX2UKGgGR0BzPDv/io87aAdN6ANoCEdAp4TUtmL9/HV9lChoBkdAfbHoePq9oWgHTegDaAhHQKeE3QF9roJ1fZQoaAZHQIUmwID5j6NoB03oA2gIR0CnhT9EkSmJdX2UKGgGR0B6NG4d6sySaAdN6ANoCEdAp4jP2TPjXHV9lChoBkdAgy0eQuEmIGgHTegDaAhHQKeQYPOIInl1fZQoaAZHQIFDAhllK9RoB03oA2gIR0CnkGkEC/47dX2UKGgGR0B8ifQSi/O/aAdN6ANoCEdAp5DPikwevXV9lChoBkdAflWiuMdcS2gHTegDaAhHQKeUWRyOrAB1fZQoaAZHQIJJT7O3UhFoB03oA2gIR0Cnm/9eQdS3dX2UKGgGR0CDTbDfm9xqaAdN6ANoCEdAp5wHpfQa73V9lChoBkdAgI7ae5Fw1mgHTegDaAhHQKeca4d6syV1fZQoaAZHQISsJj8UEgZoB03oA2gIR0CnoBOeSSvDdX2UKGgGR0CC52mdAgPmaAdN6ANoCEdAp6gVvMr3CnV9lChoBkdAh8xF1KXfImgHTegDaAhHQKeoHqcEvCd1fZQoaAZHQImJ5Xp4bCJoB03oA2gIR0CnqIJZGKAKdX2UKGgGR0CGtG0BwMpgaAdN6ANoCEdAp6wszCUHIXV9lChoBkdAgsXD/2kBS2gHTegDaAhHQKez9/zasZJ1fZQoaAZHQIJRmCK77KtoB03oA2gIR0CntACwr1/UdX2UKGgGR0CIQE25QP7OaAdN6ANoCEdAp7RlvZRKpXV9lChoBkdAhVPEW69TP2gHTegDaAhHQKe4DeN1hb51fZQoaAZHQISA0i+tbLVoB03oA2gIR0Cnv+xrSE13dX2UKGgGR0CGPQw3YL9daAdN6ANoCEdAp7/0jVx0dXV9lChoBkdAiOnoDgZTAGgHTegDaAhHQKfAWYWLxZx1fZQoaAZHQIbTiLhrFfloB03oA2gIR0Cnw/cPFvQ4dX2UKGgGR0CH3swwj+rEaAdN6ANoCEdAp8w/z19ORHV9lChoBkdAi7L5kkKNQ2gHTegDaAhHQKfMSPaL4vh1fZQoaAZHQIjLpU70WdpoB03oA2gIR0CnzLTqB3A3dX2UKGgGR0CIeqJqqOtGaAdN6ANoCEdAp9C6mQ8wH3V9lChoBkdAi+YfX5FgD2gHTegDaAhHQKfY8w9JSR91fZQoaAZHQIt8c1XNke9oB03oA2gIR0Cn2PwNTcZcdX2UKGgGR0CJCjCWNWELaAdN6ANoCEdAp9lsBnzxw3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 10, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": true, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f42c3e4f310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f42c3e4f3a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f42c3e4f430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f42c3e4f4c0>", "_build": "<function ActorCriticPolicy._build at 0x7f42c3e4f550>", "forward": "<function ActorCriticPolicy.forward at 0x7f42c3e4f5e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f42c3e4f670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f42c3e4f700>", "_predict": "<function ActorCriticPolicy._predict at 0x7f42c3e4f790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f42c3e4f820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f42c3e4f8b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f42c3e4f940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f42c3e4a810>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674042929307746659, "learning_rate": 0.0005, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/QGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAH4lmz7+cqA/T7wiPFR3vz9yhhU+pCCIP2yiJL7ssTu/h89Vv+f4IL+qnVC/iVwQPVjkBj7yzbA/Ck7+PizTRj/oXl+9FruOP2eotT5z/tS+Y/WIvgzey79P0ZU/UQ65Pu/Ah79Qwx4/WOz+PneHgj8y9w0+iXI8PG6OxT5/z6A/NcpFvxEs/b7MNJE+NxwCPughSD/7/Ia+YTH7PqHZCj+7PKu/xo8KPrVSkb6Z9s6/OwJBv86c4b4/bu09M+gCQHPn8r3u9x8/XLmAvwGadD3fYHE/UWXOv1js/j4oCnu/WdFpP4EPkzya0cU+rREQP6dPyr9CBiC/h3mCP+DnJr+HPkA/yR4gv03H1j/xTIa96zKkv2oDAj/m8ba/7iBYwICDJL+ImpA8CGrxPvNtZD80TqW+zZS6P0gAcL86Edw+32BxP1Flzr9Y7P4+KAp7v3jVIj9U9TI/VayYPgWoPT9mkOY+HpocP988ET/Unmy/02JKP202E789Ca4/y8yPPudbrL+4CXg9OQR8v8DXgb/ko3W9icj6vpAl8T5Eej8/UUQAv/LaeT40iYO/PsUgP99gcT9RZc6/WOz+PigKe7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABaq9G2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAG8bgPQAAAABUb+i/AAAAALzRIb0AAAAAcQT0PwAAAABr3FA8AAAAAH+S9z8AAAAAU8IEPgAAAACOkv+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+9oMNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOeEBb4AAAAAtEv6vwAAAAA3T5M7AAAAABlO5z8AAAAACS3GvQAAAAAfy/I/AAAAAB8uTb0AAAAAESHkvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGmdHzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDcgAe+AAAAAMVt7r8AAAAAwzmGvQAAAADb+gBAAAAAAK+ctTwAAAAAXMfYPwAAAADadsu7AAAAAJ486L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABvphK2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAkgcmPAAAAACfTeK/AAAAAIgTsDwAAAAAtwPcPwAAAACGAL69AAAAAH7U/D8AAAAAz3QuPAAAAACTtvK/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKKydGpda+yMAWyUTegDjAF0lEdApIl50MgEEHV9lChoBkdAo6KikuYhMmgHTegDaAhHQKSLnp0wJw91fZQoaAZHQJbU/K6nR9hoB03oA2gIR0CkjqIGpuMudX2UKGgGR0CkEcJBHCoCaAdN6ANoCEdApI9TwhGH6HV9lChoBkdApEHRlnRLK2gHTegDaAhHQKST4DqW1MN1fZQoaAZHQKHCX+H8CPpoB03oA2gIR0Cklfh4lhPTdX2UKGgGR0CjpYUKArhBaAdN6ANoCEdApJj8AWBSUHV9lChoBkdAo63UGxD9fmgHTegDaAhHQKSZrSZ0CBB1fZQoaAZHQKMjS9X9zfdoB03oA2gIR0CknlQ9q1w6dX2UKGgGR0CjP28fvF3qaAdN6ANoCEdApKC4D9wWFnV9lChoBkdApI2dK5Cng2gHTegDaAhHQKSjyf5DZ151fZQoaAZHQKTtyXRgJC1oB03oA2gIR0CkpHnvlU6xdX2UKGgGR0Ch2HtwaR6oaAdN6ANoCEdApKkdDSgGr3V9lChoBkdAkGOUovzvqmgHTegDaAhHQKSrR58jRlZ1fZQoaAZHQKTnXoL5RCRoB03oA2gIR0CkrlY4Qz1sdX2UKGgGR0CiBcxJ/XoUaAdN6ANoCEdApK8AUQCjlHV9lChoBkdAozUryz5XVGgHTegDaAhHQKSzmQWepXJ1fZQoaAZHQKWFhhG6PKdoB03oA2gIR0CktcdGqgh9dX2UKGgGR0CikLK0D2alaAdN6ANoCEdApLjCgsbvPXV9lChoBkdAolNdPLxI8WgHTegDaAhHQKS5biqhlDp1fZQoaAZHQKHNVE7W/ahoB03oA2gIR0CkvgCwr1/UdX2UKGgGR0Ci0D3TVlPKaAdN6ANoCEdApMAoJzDGcXV9lChoBkdAo6U7e40/GGgHTegDaAhHQKTDKlsP8Q91fZQoaAZHQKK8QqPOpsJoB03oA2gIR0Ckw+R9gF5fdX2UKGgGR0Cjj0GKIi1RaAdN6ANoCEdApMhoEOiFkHV9lChoBkdApFdiFbmlqWgHTegDaAhHQKTKgL+glGB1fZQoaAZHQKH2lORDCxhoB03oA2gIR0CkzX/O+qR2dX2UKGgGR0CjVZhnBciXaAdN6ANoCEdApM47yMDOknV9lChoBkdAo7f1CZ4Oc2gHTegDaAhHQKTS2mEXcg11fZQoaAZHQKQjLSjxkNFoB03oA2gIR0Ck1QCmVJL/dX2UKGgGR0CkAzI/zJ6qaAdN6ANoCEdApNgKfapPynV9lChoBkdAorM0KG+K0mgHTegDaAhHQKTYv9E1EVp1fZQoaAZHQKHOZlJYkmhoB03oA2gIR0Ck3W1+7UXpdX2UKGgGR0Cj5hubqhUSaAdN6ANoCEdApN+nLeQ+2XV9lChoBkdAozf62rn1WmgHTegDaAhHQKTiyIKtxMp1fZQoaAZHQKSUB2wFC9hoB03oA2gIR0Ck44T2OAAidX2UKGgGR0Cj7vrnLaEjaAdN6ANoCEdApOgezByjpXV9lChoBkdAov+GbG3nZGgHTegDaAhHQKTqSy5Zr591fZQoaAZHQKSdhLqUu+RoB03oA2gIR0Ck7U9LQHAzdX2UKGgGR0Cjr4bx/d6+aAdN6ANoCEdApO398/lhgHV9lChoBkdAo1zweeWfLGgHTegDaAhHQKTymTJQtSR1fZQoaAZHQKL44/OdGy5oB03oA2gIR0Ck9LcJUo8ZdX2UKGgGR0ChnIYKYzBRaAdN6ANoCEdApPe9KbrkbXV9lChoBkdAosm2WBz3iGgHTegDaAhHQKT4c6MBIWh1fZQoaAZHQKKqARW912doB03oA2gIR0Ck/RJM6BAfdX2UKGgGR0CitUbJOnEVaAdN6ANoCEdApP83e1rqMXV9lChoBkdAo0ippztCzGgHTegDaAhHQKUCPUCJXQt1fZQoaAZHQKFOpZRsMy9oB03oA2gIR0ClAunlfZ27dX2UKGgGR0CiyvNQsPJ8aAdN6ANoCEdApQdvRTjvNXV9lChoBkdApCv4KQaJh2gHTegDaAhHQKUJi2rn1Wd1fZQoaAZHQKHT3/giu+1oB03oA2gIR0ClDIKPwNLEdX2UKGgGR0CkMDNC7btaaAdN6ANoCEdApQ04GOdXk3V9lChoBkdApLco9eQdS2gHTegDaAhHQKUR8fvnbIt1fZQoaAZHQKObrTPSlWRoB03oA2gIR0ClFCAOjIq9dX2UKGgGR0CkcQzZpSJkaAdN6ANoCEdApRcoe/5+IHV9lChoBkdAoKN1p48lomgHTegDaAhHQKUX65U96kZ1fZQoaAZHQKPZgXHBDXxoB03oA2gIR0ClHM+fAbhndX2UKGgGR0ClR/7l7tzCaAdN6ANoCEdApR7oUahpQHV9lChoBkdAowUED4gzQGgHTegDaAhHQKUh+WGh24d1fZQoaAZHQKNzJ1wo9cNoB03oA2gIR0ClIqb3fyf+dX2UKGgGR0Ckw5zo+wC9aAdN6ANoCEdApSc3W6K+BnV9lChoBkdApI6ypWFN+WgHTegDaAhHQKUpU1VHWjJ1fZQoaAZHQKE7R029+PRoB03oA2gIR0ClLE3/HYHxdX2UKGgGR0Ck0eMW43FUaAdN6ANoCEdApS0KY7aIvnV9lChoBkdApLCYYFaB7WgHTegDaAhHQKUxk5nUUfx1fZQoaAZHQKS+YW9lEqloB03oA2gIR0ClM7R7qptKdX2UKGgGR0Ckquos7MgVaAdN6ANoCEdApTbekFfReHV9lChoBkdApEgASQHRkWgHTegDaAhHQKU3k5+Ytxx1fZQoaAZHQKSLqGvfTCtoB03oA2gIR0ClPEZjQRf4dX2UKGgGR0CkWiwnx8UmaAdN6ANoCEdApT5rvTgEU3V9lChoBkdApIBeBczIm2gHTegDaAhHQKVBcNtIkJN1fZQoaAZHQKNGOTQE6ktoB03oA2gIR0ClQiy0rsjWdX2UKGgGR0Ck9/u5rgwXaAdN6ANoCEdApUa+mixmkHV9lChoBkdApFLsejmCAmgHTegDaAhHQKVI1q9oN/h1fZQoaAZHQKRgTqQA+6loB03oA2gIR0ClS9cwQDmsdX2UKGgGR0ClIpDn3cpLaAdN6ANoCEdApUyRPKuB+XV9lChoBkdApTcUYbbUPWgHTegDaAhHQKVRTTUiILx1fZQoaAZHQKTYqgQpWmxoB03oA2gIR0ClU4mY0EX+dX2UKGgGR0ClJFrSeAd5aAdN6ANoCEdApVamGCZnc3V9lChoBkdApZafFLnLaGgHTegDaAhHQKVXVuGbkOt1fZQoaAZHQKUE5O0LMLZoB03oA2gIR0ClXDQZOzppdX2UKGgGR0Chtp2rfcesaAdN6ANoCEdApV5dvGZNPHV9lChoBkdAo+bOK0lZ5mgHTegDaAhHQKVhdKujh1l1fZQoaAZHQKBuDJW/8EVoB03oA2gIR0ClYjCfHxSYdX2UKGgGR0CkIjf8dgfEaAdN6ANoCEdApWb3EETxonV9lChoBkdAoCcINqgyumgHTegDaAhHQKVpJgssg+11fZQoaAZHQKKNoVkc0choB03oA2gIR0ClbDspobn6dX2UKGgGR0Cj4+M1TBInaAdN6ANoCEdApWzy9K28ZnV9lChoBkdAo3+oM+eOGWgHTegDaAhHQKVxjUrCm/F1fZQoaAZHQKPs++Eh7mdoB03oA2gIR0Clc7lZPl+3dX2UKGgGR0ChctK0+kgwaAdN6ANoCEdApXbcLlV94XV9lChoBkdAo810xqO94GgHTegDaAhHQKV3kynk1dh1fZQoaAZHQKVu4RJVbRpoB03oA2gIR0ClfDZmRNh3dX2UKGgGR0CjZLmKhtcfaAdN6ANoCEdApX5cDB/I83V9lChoBkdAo00gKD0162gHTegDaAhHQKWBZrtVrAR1fZQoaAZHQKD/6Ac1fmdoB03oA2gIR0ClghfuTibVdX2UKGgGR0Cka2DzI3iraAdN6ANoCEdApYasefZmI3V9lChoBkdAo2xgC6pYLmgHTegDaAhHQKWIzhcZ9/l1fZQoaAZHQKNf+DwH7gtoB03oA2gIR0Cli9VUVBUrdX2UKGgGR0CkYuxpUPxyaAdN6ANoCEdApYyD4DcM3XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 25000, "n_steps": 20, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": true, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 2597.7679427655994, "std_reward": 98.02943451999208, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-18T13:04:23.607358"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2521
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c25f5983d9d6548554e32ca45fd79886dc005a60a74654717f69ac9762ed6870
|
3 |
size 2521
|