--- datasets: - IbrahimSalah/The_Arabic_News_speech_Corpus_Dataset language: - ar tags: - Arabic - MSA - Speech - Syllables - Wav2vec - ASR --- # Arabic syllables recognition with tashkeel **paper DOI** : https://doi.org/10.60161/2521-001-001-006 \ This is fine tuned wav2vec2 model to recognize arabic syllables from speech. The model was trained on Modern standard arabic dataset .\ 5-gram language model is available with the model. To try it out : ``` !pip install datasets transformers !pip install https://github.com/kpu/kenlm/archive/master.zip pyctcdecode ``` ``` from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC from transformers import Wav2Vec2ProcessorWithLM processor = Wav2Vec2ProcessorWithLM.from_pretrained('IbrahimSalah/Syllables_final_Large') model = Wav2Vec2ForCTC.from_pretrained("IbrahimSalah/Syllables_final_Large") ``` ``` import pandas as pd dftest = pd.DataFrame(columns=['audio']) import datasets from datasets import Dataset path ='/content/908-33.wav' dftest['audio']=[path] ## audio path dataset = Dataset.from_pandas(dftest) ``` ``` import torch import torchaudio def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["audio"]) print(sampling_rate) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) # The original data was with 48,000 sampling rate. You can change it according to your input. batch["audio"] = resampler(speech_array).squeeze().numpy() return batch ``` ``` import numpy as np from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["audio"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values).logits print(logits.numpy().shape) transcription = processor.batch_decode(logits.numpy()).text print("Prediction:",transcription[0]) ``` # You can then convert the syllables to full word using our fine tuned mT5 model[IbrahimSalah/Arabic_Syllables_to_text_Converter_Using_MT5] ## Citation **BibTeX:** ```bibtex @article{2024SyllableBasedAS, title={Syllable-Based Arabic Speech Recognition Using Wav2Vec}, author={إبراهيم عبدالعال and مصطفى الشافعي and محمد عبدالواحد}, journal={مجلة اللغات الحاسوبية والمعالجة الآلية للغة العربية}, year={2024}, url={https://api.semanticscholar.org/CorpusID:269151543} }