File size: 1,956 Bytes
f36d144
32cda5e
 
 
 
 
 
 
 
f36d144
 
32cda5e
 
f36d144
32cda5e
f36d144
32cda5e
 
c45713f
f36d144
32cda5e
f36d144
32cda5e
f36d144
32cda5e
f36d144
32cda5e
f36d144
32cda5e
f36d144
32cda5e
f36d144
32cda5e
f36d144
32cda5e
f36d144
32cda5e
 
 
 
 
 
 
 
 
 
 
 
f36d144
32cda5e
f36d144
32cda5e
 
c45713f
 
 
 
 
 
 
 
 
 
f36d144
 
32cda5e
f36d144
32cda5e
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: TheBloke/Mistral-7B-Instruct-v0.2-GPTQ
model-index:
- name: agrobot-ft
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# agrobot-ft

This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.2-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GPTQ) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5122

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.8082        | 0.99  | 102  | 0.4496          |
| 0.4347        | 2.0   | 205  | 0.4363          |
| 0.4106        | 3.0   | 308  | 0.4318          |
| 0.3875        | 4.0   | 411  | 0.4297          |
| 0.3673        | 4.99  | 513  | 0.4363          |
| 0.3404        | 6.0   | 616  | 0.4441          |
| 0.3178        | 7.0   | 719  | 0.4543          |
| 0.2975        | 8.0   | 822  | 0.4770          |
| 0.2828        | 8.99  | 924  | 0.4915          |
| 0.2664        | 9.93  | 1020 | 0.5122          |


### Framework versions

- PEFT 0.11.1
- Transformers 4.39.3
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2