IbtisamAfzal commited on
Commit
fd285c1
1 Parent(s): b7636e1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +30 -16
README.md CHANGED
@@ -6,17 +6,24 @@ tags:
6
  - generated_from_trainer
7
  metrics:
8
  - rouge
 
9
  model-index:
10
  - name: T5_Fine_Tuned_on_Arxiv_Dataset
11
  results: []
 
 
 
 
12
  ---
13
 
14
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
- should probably proofread and complete it, then remove this comment. -->
16
 
17
  # T5_Fine_Tuned_on_Arxiv_Dataset
18
 
19
- This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
 
 
 
 
20
  It achieves the following results on the evaluation set:
21
  - Loss: 2.7599
22
  - Rouge1: 0.1635
@@ -25,19 +32,22 @@ It achieves the following results on the evaluation set:
25
  - Rougelsum: 0.1311
26
  - Generated Length: 18.9852
27
 
28
- ## Model description
29
-
30
- More information needed
31
-
32
- ## Intended uses & limitations
33
-
34
- More information needed
35
-
36
- ## Training and evaluation data
37
-
38
- More information needed
39
-
40
- ## Training procedure
 
 
 
41
 
42
  ### Training hyperparameters
43
 
@@ -66,3 +76,7 @@ The following hyperparameters were used during training:
66
  - Pytorch 2.4.1+cu121
67
  - Datasets 3.0.1
68
  - Tokenizers 0.19.1
 
 
 
 
 
6
  - generated_from_trainer
7
  metrics:
8
  - rouge
9
+ - accuracy
10
  model-index:
11
  - name: T5_Fine_Tuned_on_Arxiv_Dataset
12
  results: []
13
+ datasets:
14
+ - ccdv/arxiv-summarization
15
+ language:
16
+ - en
17
  ---
18
 
 
 
19
 
20
  # T5_Fine_Tuned_on_Arxiv_Dataset
21
 
22
+
23
+ ## Model Description
24
+ This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) designed for summarizing research papers from the Arxiv dataset. It utilizes an abstractive summarization approach to generate concise summaries that capture the main findings and contributions of the papers, facilitating easier understanding of complex academic content.
25
+
26
+ ## Evaluation
27
  It achieves the following results on the evaluation set:
28
  - Loss: 2.7599
29
  - Rouge1: 0.1635
 
32
  - Rougelsum: 0.1311
33
  - Generated Length: 18.9852
34
 
35
+ ## Model Overview
36
+ - **Model Name**: Arxiv Summarization Model
37
+ - **Model Type**: Summarization (Abstractive)
38
+ - **Version**: 1.0
39
+ - **Date**: [28-Sep-2024]
40
+ - **Authors**: Muhammad Ibtisam Afzal
41
+ - **Contact Information**: [email protected]
42
+
43
+ ## Dataset
44
+ - **Dataset Name**: ccdv/arxiv-summarization
45
+ - **Dataset Description**: This dataset consists of articles from the Arxiv repository, paired with their respective abstracts. It is intended for training and evaluating summarization models in the academic domain.
46
+ - **Training/Validation/Test Split**: The dataset was split into training (80%), validation (10%), and test (10%) sets.
47
+ - **Data Source**: Hugging Face Datasets Hub
48
+
49
+ ## Limitations
50
+ The model may struggle with highly technical content or specialized jargon that is not well-represented in the training dataset. Additionally, it may produce summaries that lack coherence or completeness for particularly long documents.
51
 
52
  ### Training hyperparameters
53
 
 
76
  - Pytorch 2.4.1+cu121
77
  - Datasets 3.0.1
78
  - Tokenizers 0.19.1
79
+
80
+ ## Acknowledgments
81
+ Thanks to Hugging Face for providing the infrastructure and datasets necessary for developing and evaluating this model.
82
+