ClipMD / ClipMDModel.py
Idan0405's picture
Upload ClipMDModel.py
1cc900c
raw
history blame
5.76 kB
from transformers import CLIPModel
import torch
from typing import Optional, Tuple
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
return torch.nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
def clip_loss(logits_per_text: torch.Tensor) -> torch.Tensor:
caption_loss = contrastive_loss(logits_per_text)
image_loss = contrastive_loss(logits_per_text.T)
return (caption_loss + image_loss) / 2.0
class ClipMDModel(CLIPModel):
def embed_text(self,
input_ids:torch.LongTensor,
attention_mask:torch.LongTensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
position_ids: Optional[torch.LongTensor] = None,
):
"""
:param input_ids: tokenized text from CLIPProcessor.
:param attention_mask: attention mask from CLIPProcessor.
:return: text embeddings of input_ids (tokens longer then 77 tokens
is embeded using a sliding window and pooling).
"""
tokens = []
masks = []
pos = []
for i in range(input_ids.size()[0]):
ten = input_ids[i]
mask = attention_mask[i]
mask = mask[mask.nonzero().flatten()]
ten = ten[:mask.size()[0]]
if not pos:
pos.append([0, 0])
else:
pos.append([pos[-1][1], pos[-1][1]])
#spliting tokenized text into input sized chunks with an overlapping window.
if ten.size()[0]>77:
tokens.append(ten.unfold(dimension = 0,size = 77, step = 70))
masks.append(mask.unfold(dimension = 0,size = 77, step = 70))
pos[-1][1]+=tokens[-1].size()[0]
ten=ten[tokens[-1].size()[0]*70:]
mask=mask[tokens[-1].size()[0]*70:]
if ten.size()[0] > 0:
new_mask = torch.zeros((1, 77)).to(self.device)
new_mask[:, 0:mask.size()[0]] = mask
new_ten = torch.full((1, 77), 49407).to(self.device)
new_ten[:, 0:ten.size()[0]] = ten
tokens.append(new_ten)
masks.append(new_mask)
pos[-1][1] += 1
#encoding the tokenized text
embedded = self.get_text_features(input_ids=torch.cat(tokens, 0),
attention_mask=torch.cat(masks, 0),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
position_ids=position_ids,
)
#pooling the embeddings of segments that came from the same original text
embeddings = []
for p in pos:
if p[1] - p[0] == 1:
embeddings.append(embedded[p[0]].unsqueeze(0))
else:
embeddings.append(torch.mean(embedded[p[0]:p[1]], dim=0).unsqueeze(0))
return torch.cat(embeddings, 0)
def forward(self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
return_loss: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Tuple:
"""
:param input_ids: tokenized text from CLIPProcessor.
:param attention_mask: attention mask from CLIPProcessor.
:param pixel_values: pixel values from CLIPProcessor.
:param return_loss: boolean that indicates if loss should be returned
:return: image-caption cosine similarity as logits per image and per caption (also loss if return_loss is true)
"""
# Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = self.config.use_return_dict
#encoding the images
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
image_embeds = vision_outputs[1]
image_embeds = self.visual_projection(image_embeds)
#encoding the text captions
text_embeds =self.embed_text(input_ids=input_ids,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
position_ids=position_ids
)
# normalized features
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
# cosine similarity as logits
logit_scale = self.logit_scale.exp()
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
logits_per_image = logits_per_text.T
if return_loss:
loss = clip_loss(logits_per_text)
return logits_per_image,logits_per_text,loss
return logits_per_image,logits_per_text