|
from transformers import CLIPModel |
|
import torch |
|
from typing import Optional, Tuple |
|
|
|
|
|
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor: |
|
return torch.nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device)) |
|
|
|
|
|
def clip_loss(logits_per_text: torch.Tensor) -> torch.Tensor: |
|
caption_loss = contrastive_loss(logits_per_text) |
|
image_loss = contrastive_loss(logits_per_text.T) |
|
return (caption_loss + image_loss) / 2.0 |
|
|
|
|
|
class ClipMDModel(CLIPModel): |
|
|
|
def embed_text(self, |
|
input_ids:torch.LongTensor, |
|
attention_mask:torch.LongTensor, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
): |
|
""" |
|
:param input_ids: tokenized text from CLIPProcessor. |
|
:param attention_mask: attention mask from CLIPProcessor. |
|
:return: text embeddings of input_ids (tokens longer then 77 tokens |
|
is embeded using a sliding window and pooling). |
|
""" |
|
tokens = [] |
|
masks = [] |
|
pos = [] |
|
|
|
for i in range(input_ids.size()[0]): |
|
ten = input_ids[i] |
|
mask = attention_mask[i] |
|
mask = mask[mask.nonzero().flatten()] |
|
ten = ten[:mask.size()[0]] |
|
|
|
if not pos: |
|
pos.append([0, 0]) |
|
else: |
|
pos.append([pos[-1][1], pos[-1][1]]) |
|
|
|
|
|
if ten.size()[0]>77: |
|
tokens.append(ten.unfold(dimension = 0,size = 77, step = 70)) |
|
masks.append(mask.unfold(dimension = 0,size = 77, step = 70)) |
|
|
|
pos[-1][1]+=tokens[-1].size()[0] |
|
|
|
ten=ten[tokens[-1].size()[0]*70:] |
|
mask=mask[tokens[-1].size()[0]*70:] |
|
|
|
if ten.size()[0] > 0: |
|
new_mask = torch.zeros((1, 77)).to(self.device) |
|
new_mask[:, 0:mask.size()[0]] = mask |
|
|
|
new_ten = torch.full((1, 77), 49407).to(self.device) |
|
new_ten[:, 0:ten.size()[0]] = ten |
|
|
|
tokens.append(new_ten) |
|
masks.append(new_mask) |
|
pos[-1][1] += 1 |
|
|
|
embedded = self.get_text_features(input_ids=torch.cat(tokens, 0), |
|
attention_mask=torch.cat(masks, 0), |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
position_ids=position_ids, |
|
) |
|
|
|
|
|
embeddings = [] |
|
for p in pos: |
|
if p[1] - p[0] == 1: |
|
embeddings.append(embedded[p[0]].unsqueeze(0)) |
|
else: |
|
embeddings.append(torch.mean(embedded[p[0]:p[1]], dim=0).unsqueeze(0)) |
|
|
|
return torch.cat(embeddings, 0) |
|
|
|
def forward(self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
return_loss: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Tuple: |
|
""" |
|
:param input_ids: tokenized text from CLIPProcessor. |
|
:param attention_mask: attention mask from CLIPProcessor. |
|
:param pixel_values: pixel values from CLIPProcessor. |
|
:param return_loss: boolean that indicates if loss should be returned |
|
:return: image-caption cosine similarity as logits per image and per caption (also loss if return_loss is true) |
|
""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = self.config.use_return_dict |
|
|
|
|
|
vision_outputs = self.vision_model( |
|
pixel_values=pixel_values, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
) |
|
image_embeds = vision_outputs[1] |
|
image_embeds = self.visual_projection(image_embeds) |
|
|
|
|
|
text_embeds =self.embed_text(input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
position_ids=position_ids |
|
) |
|
|
|
|
|
|
|
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True) |
|
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) |
|
|
|
|
|
logit_scale = self.logit_scale.exp() |
|
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale |
|
logits_per_image = logits_per_text.T |
|
|
|
if return_loss: |
|
loss = clip_loss(logits_per_text) |
|
return logits_per_image,logits_per_text,loss |
|
return logits_per_image,logits_per_text |
|
|