Iggg0r's picture
first dummy solution
2f1c431
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fcc15446b80>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcc15446c10>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcc15446ca0>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcc15446d30>",
"_build": "<function ActorCriticPolicy._build at 0x7fcc15446dc0>",
"forward": "<function ActorCriticPolicy.forward at 0x7fcc15446e50>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcc15446ee0>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcc15446f70>",
"_predict": "<function ActorCriticPolicy._predict at 0x7fcc1544c040>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcc1544c0d0>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcc1544c160>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcc1544c1f0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7fcc15447270>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 64,
"num_timesteps": 2097152,
"_total_timesteps": 2000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1675885806135840000,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYy9Vc2Vycy9pZ29yL29wdC9hbmFjb25kYTMvZW52cy9weTM4cmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYy9Vc2Vycy9pZ29yL29wdC9hbmFjb25kYTMvZW52cy9weTM4cmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAGaV6Lw96iS5Wi2WO3ICmDjCZHg7szrauQAAgD8AAIA/M71EvXv6lrqZApA7TmQEOKjXOrmKSvi2AACAPwAAgD+aJRg8H63yuYrryLuGUZo3KuSyuoYq7bYAAIA/AACAPwASF7yPji26FjtZOvc0WzU/DEg6Tld9uQAAgD8AAIA/mrlyvI8+aLre2nI6sAWEtcnMRjunsYy5AACAPwAAgD/NB8Y8ygM3PtJAAr4FvJ6+DJV7vD1uUb0AAAAAAAAAAABo77x7Xpy6qEmCs5yNFrDqL986tBLMMwAAgD8AAIA/M9uTvOFsmbpqic84Uo0CNXVRFzo6BOIzAACAPwAAgD9mVUm9jzZzukDSejmlTsg0jSCGOkJcjrgAAIA/AACAP5pSmrwUDqW4rKWzupHXajyUGuW7/CXMugAAgD8AAIA/M7NVOsNZCbrbXJC6gKXCNa9wZjofKKg5AACAPwAAgD/mdxi9H+3fuerwtzuy/rA3r/d7OjM+8zQAAIA/AACAPzMGmr3DJVW6yK2WOtoxvzXvAA47CP+suQAAgD8AAIA/zVqHPFzfPrrOASo4XD4LM/Y/FjvuOUm3AACAPwAAgD+aqo689kwRupOE5jrHlx022Yl0OQh9BLoAAIA/AACAP9pOwr1cmxm6q7jmO1n+PLasGq+7hmk8tQAAgD8AAIA/mkqQPOE62rjKSb07DTeXOJyTZzuywlu5AACAPwAAgD/NGpe8H4XDudEnkLr/0T65tO0Nu74EsDkAAIA/AACAPzNr/ztIaYe6YMsbOg0sjzb1gAc7OawwuQAAgD8AAIA/mpwKveH8k7r6HQq60C8rOcHUObuSoAs5AACAPwAAgD8aYTO9e2CRuvI2P7jayIez9PMDO+B7XzcAAIA/AACAP2Ym+rtc01a6vohmOlsAODbzQ4S5E1SGuQAAgD8AAIA/AHw5vAo3T7knPLi71lDwNyoSG7tjT7q2AACAPwAAgD8AmnA8KdBqupBBbDgiRaQzYxMtuoxFibcAAIA/AACAP2bMpDyFK/i5PmHiOgms7TW/XG27p0YEugAAgD8AAIA/Tf8wvY9uBbqmi9i6jxzttQDcqLqOPPc5AACAPwAAgD+aVes8PUphuXZwjTozRJM1+/GBOypKpLkAAIA/AACAP+bYWT1cq2C6Tu1jugtcdrbpa5k5iwiDOQAAgD8AAIA/MyP4vfbskj+6cb++VfHsvu5nar75wUO+AAAAAAAAAAAA2bq97Jm/uW592zoADmI06NGMu9qw/7kAAIA/AACAP1qQg73XNTq7wh4vO3Tlujyp8Gi8gtmePQAAgD8AAIA/mlkJPQp+dj52tJ2+Y+urvif0Nr5AZyW+AAAAAAAAAACaRVm9PRpVuan6GjqF1Jc10zfhulYDObkAAIA/AACAP3PqvL1SIP+5SNDrupym67XkpHe53/AKOgAAgD8AAIA/WpzYvSc3SD9od6K9migev5aOqb0pVEW9AAAAAAAAAAAzgTq8uC6uuWR+SzlVeTG2PrgFO/UTbLgAAIA/AACAP5r9+7vhkIG6bRtrujnSqjwqCbA6kMGTvQAAgD8AAIA/87GEvthcGz9hzL+9zsshv/W1877yvai9AAAAAAAAAACaPJe8KUBzussBfzkzLeczPT0KueAok7gAAIA/AACAP/MKjr0pOFS6v+O4OUTr6bUhW2O7K6fZuAAAgD8AAIA/ALkGveHmhbqCgYM7zoPJOBKFeDvCmpe6AACAPwAAgD9N1I69rvuNumXscjtKBoM2GZgIuwBjjLoAAIA/AACAP/PpoL09aj65jKGROZbomTRIpoK7tmepuAAAgD8AAIA/zQsDvRT0i7pgOuO6f7KRtiz8TjtrHAE6AACAPwAAgD8Absu813MjuWVx5rrOoVW2khm4ucZJBzoAAIA/AACAPwCvhLxOvrw/Qn4KvsV//D29B7y8PXSmvQAAAAAAAAAAzXSAu0jHtro6Udg64rLcNcmSfDkwova5AACAPwAAgD960YS+DG8xP3jIQD42Rd6+cNZ1vmUUUD4AAAAAAAAAAJpfar3OALs/+vKVvqWc5b182gG+wLb7vQAAAAAAAAAAmmk7O1zLXrpgcOe6XA0JtjkdBbpSTQM6AACAPwAAgD9megy87CHCuXO2wDt1vyY2zF4nu5ZxIDUAAIA/AACAP000C732lGK6jnz3OQd37jUzUqs6BWkMuQAAgD8AAIA/MzDBvBRgg7pc7pu6XIqLtYAc5rnycrQ5AACAPwAAgD/NsJC7j/JiutBgYrxk6p62RBX3uv2tDjYAAIA/AACAP80SDb0pYFy6QohSvMOJJr1slJA7XvklPQAAAAAAAAAAM8jFPMN9P7rXm5G7g/fztgeseTuh2ag6AACAPwAAgD+zvUy9rgeAOdt7WrqNhEk7lFQjO/rjXj0AAAAAAAAAAMDOnb17JqS6WtmSOwY/SDi4/gi6kdqpuAAAgD8AAIA/AEkYva4Hnbh7vVE6xJUTNnNEortKUXW5AACAPwAAgD9mEUm99iRRuuottzjLU0O2B0xfO7Odz7cAAIA/AACAP2a2Hz171Iy6iHzjOYwoAjVkN+Y67K0DuQAAgD8AAIA/TWByva6npbg9wA67n+WStmVB1bp3gQo2AACAPwAAgD9N6GS9SM+3ugshG7q334U0BjU6ujoRMTkAAIA/AACAP2aATDwfXfq5EgRRtqCLhbEjVkY7CkB/NQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.04857599999999995,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMINExtqQNrckCUhpRSlIwBbJRNlwOMAXSUR0ChOGxjz7MxdX2UKGgGaAloD0MIsI14shu9ZUCUhpRSlGgVTegDaBZHQKE4ruMuOCJ1fZQoaAZoCWgPQwipaKz9HTJkQJSGlFKUaBVN6ANoFkdAoTjvbKzRhXV9lChoBmgJaA9DCHB87ZmlrGRAlIaUUpRoFU3oA2gWR0ChOszeGfwrdX2UKGgGaAloD0MI96xrtBwlYkCUhpRSlGgVTegDaBZHQKE7bkS26TZ1fZQoaAZoCWgPQwjtRElIpBRmQJSGlFKUaBVN6ANoFkdAoTxCf4AS4HV9lChoBmgJaA9DCGQ6dHpe3GJAlIaUUpRoFU3oA2gWR0ChPT8cU/OddX2UKGgGaAloD0MIPdNLjGUcc0CUhpRSlGgVS+xoFkdAoT5T1schknV9lChoBmgJaA9DCHSV7q4zhWJAlIaUUpRoFU3oA2gWR0ChQBnxri2ldX2UKGgGaAloD0MILeqT3GGSXkCUhpRSlGgVTegDaBZHQKFAL3yqdYp1fZQoaAZoCWgPQwixicxc4IthQJSGlFKUaBVN6ANoFkdAoUHvoPkJbHV9lChoBmgJaA9DCNRIS+Xtt2ZAlIaUUpRoFU3oA2gWR0ChQmHf/FR6dX2UKGgGaAloD0MIuOUjKekBZUCUhpRSlGgVTegDaBZHQKFC1Hd43WF1fZQoaAZoCWgPQwjUX6+wYAJgQJSGlFKUaBVN6ANoFkdAoUXPiPyTZHV9lChoBmgJaA9DCHhgAOHDPGVAlIaUUpRoFU3oA2gWR0ChR5YUeuFIdX2UKGgGaAloD0MIRML3/oYHZkCUhpRSlGgVTegDaBZHQKFH8SeRPoF1fZQoaAZoCWgPQwh002achilkQJSGlFKUaBVN6ANoFkdAoUgzdFfAsXV9lChoBmgJaA9DCOWXwRgRdmdAlIaUUpRoFU3oA2gWR0ChSU+x4Y78dX2UKGgGaAloD0MI09heC/oRZECUhpRSlGgVTegDaBZHQKFJlXYDklx1fZQoaAZoCWgPQwi1cFmFTednQJSGlFKUaBVN6ANoFkdAoUydxjriVHV9lChoBmgJaA9DCBu8r8qFjmJAlIaUUpRoFU3oA2gWR0ChTVnBUJfIdX2UKGgGaAloD0MISYYcW8+XYkCUhpRSlGgVTegDaBZHQKFQE/47A+J1fZQoaAZoCWgPQwg4E9OFWF5iQJSGlFKUaBVN6ANoFkdAoVCwuoP07XV9lChoBmgJaA9DCP/sR4rIBmVAlIaUUpRoFU3oA2gWR0ChUtu+ZgG9dX2UKGgGaAloD0MIZk8Cm/MsZ0CUhpRSlGgVTegDaBZHQKFUD3fyf+V1fZQoaAZoCWgPQwgL7gc8MEFoQJSGlFKUaBVN6ANoFkdAoVZgBLf1pXV9lChoBmgJaA9DCLx4P24/VWBAlIaUUpRoFU3oA2gWR0ChVzi2MKkVdX2UKGgGaAloD0MIfQOTG8VfZECUhpRSlGgVTegDaBZHQKFY5GSZBs11fZQoaAZoCWgPQwhlwi/1c3ZjQJSGlFKUaBVN6ANoFkdAoVl147ihnXV9lChoBmgJaA9DCOhrlstGbWNAlIaUUpRoFU3oA2gWR0ChXA66z3RHdX2UKGgGaAloD0MIGoaPiKnKZECUhpRSlGgVTegDaBZHQKFctLV4HHF1fZQoaAZoCWgPQwg5Q3HHG0dgQJSGlFKUaBVN6ANoFkdAoV1w6ySmqHV9lChoBmgJaA9DCHIW9rRDYGRAlIaUUpRoFU3oA2gWR0ChXgW7nPmgdX2UKGgGaAloD0MIf6SIDCtHYECUhpRSlGgVTegDaBZHQKFe7HpbD/F1fZQoaAZoCWgPQwhqaW6FMPNmQJSGlFKUaBVN6ANoFkdAoV8CIpH7QHV9lChoBmgJaA9DCM7+QLntIWhAlIaUUpRoFU3oA2gWR0ChXylWXC0odX2UKGgGaAloD0MIbVUS2QcrZECUhpRSlGgVTegDaBZHQKFfhollbvB1fZQoaAZoCWgPQwj+CwQBsmBgQJSGlFKUaBVN6ANoFkdAoV/6f8MuvnV9lChoBmgJaA9DCHIVi98UPGVAlIaUUpRoFU3oA2gWR0ChYPzU7Sy/dX2UKGgGaAloD0MIYVW9/M6lbkCUhpRSlGgVTeoCaBZHQKFhnM5fdAR1fZQoaAZoCWgPQwh5AfbRKbVgQJSGlFKUaBVN6ANoFkdAoWIb9ETg23V9lChoBmgJaA9DCHmsGRlkLWNAlIaUUpRoFU3oA2gWR0ChYlM1baAXdX2UKGgGaAloD0MIvf+PEyZFYkCUhpRSlGgVTegDaBZHQKFieO/+Kj11fZQoaAZoCWgPQwjUEFX4Mz1kQJSGlFKUaBVN6ANoFkdAoWQLfek563V9lChoBmgJaA9DCPUsCOV9/mBAlIaUUpRoFU3oA2gWR0ChZHE9dNWVdX2UKGgGaAloD0MI7nw/Nd7RYkCUhpRSlGgVTegDaBZHQKFl5G4I8hd1fZQoaAZoCWgPQwi86gHzEMhgQJSGlFKUaBVN6ANoFkdAoWbYeaKDTXV9lChoBmgJaA9DCF9AL9y5/2JAlIaUUpRoFU3oA2gWR0ChZyIxgy/LdX2UKGgGaAloD0MIelImNbREY0CUhpRSlGgVTegDaBZHQKFoa+hXbM51fZQoaAZoCWgPQwhntcAeE25fQJSGlFKUaBVN6ANoFkdAoWmCBshxHXV9lChoBmgJaA9DCNl6hnBMUGNAlIaUUpRoFU3oA2gWR0ChbHgwXZXddX2UKGgGaAloD0MIP49RnvnOcUCUhpRSlGgVTRUBaBZHQKFux8Yyfth1fZQoaAZoCWgPQwg0R1Z+GfdlQJSGlFKUaBVN6ANoFkdAoW7ZKFqSHXV9lChoBmgJaA9DCAddwqE3VGVAlIaUUpRoFU3oA2gWR0Chbv5VfeDWdX2UKGgGaAloD0MI9RQ5RFzYZkCUhpRSlGgVTegDaBZHQKFvMSElE7Z1fZQoaAZoCWgPQwhaKm9HuPFnQJSGlFKUaBVN6ANoFkdAoXBtt8/lhnV9lChoBmgJaA9DCJoF2h1SIGVAlIaUUpRoFU3oA2gWR0ChcnzDO1OTdX2UKGgGaAloD0MI0XR2MjgSYkCUhpRSlGgVTegDaBZHQKFz+R5kbxV1fZQoaAZoCWgPQwgMlBRYAH1gQJSGlFKUaBVN6ANoFkdAoXU3aYeDF3V9lChoBmgJaA9DCElHOZjNb2dAlIaUUpRoFU3oA2gWR0Chd73d9Dx9dX2UKGgGaAloD0MIJvxSP28EaECUhpRSlGgVTegDaBZHQKF30weNkvt1fZQoaAZoCWgPQwiOXDelvKJhQJSGlFKUaBVN6ANoFkdAoXf3PZ7HAHV9lChoBmgJaA9DCM07TtERI2VAlIaUUpRoFU3oA2gWR0CheUDhcZ+AdX2UKGgGaAloD0MI5SoWvynnaUCUhpRSlGgVTegDaBZHQKF52iAUcn51fZQoaAZoCWgPQwhXe9gLhfNmQJSGlFKUaBVN6ANoFkdAoXoyqyWzGHV9lChoBmgJaA9DCD8Cf/j550jAlIaUUpRoFU2nAWgWR0Che4N78ejmdX2UKGgGaAloD0MIGxNiLikFYkCUhpRSlGgVTegDaBZHQKF8GdUbT+h1fZQoaAZoCWgPQwhe2JqtvDZjQJSGlFKUaBVN6ANoFkdAoXxc0SAYpHV9lChoBmgJaA9DCM1WXvK/LGFAlIaUUpRoFU3oA2gWR0ChfKAzYVZcdX2UKGgGaAloD0MI1PIDV3nRZECUhpRSlGgVTegDaBZHQKF+V238XN11fZQoaAZoCWgPQwh7Z7RVyb9kQJSGlFKUaBVN6ANoFkdAoX8ClrM1THV9lChoBmgJaA9DCNkiaTd6hWdAlIaUUpRoFU3oA2gWR0Chf9mZmZmadX2UKGgGaAloD0MIcO8a9KWnZkCUhpRSlGgVTegDaBZHQKGA26GxlhB1fZQoaAZoCWgPQwiNz2T/PPplQJSGlFKUaBVN6ANoFkdAoYHx6KLsKXV9lChoBmgJaA9DCEz/klSmwWVAlIaUUpRoFU3oA2gWR0Chg62saKk3dX2UKGgGaAloD0MIZVBtcCKLXkCUhpRSlGgVTegDaBZHQKGDwjtXxON1fZQoaAZoCWgPQwgQAvIl1IJkQJSGlFKUaBVN6ANoFkdAoYVp3kgfVHV9lChoBmgJaA9DCGwGuCDb7WVAlIaUUpRoFU3oA2gWR0Chhdx3eN1hdX2UKGgGaAloD0MI/1nz469mY0CUhpRSlGgVTegDaBZHQKGGURT0g8t1fZQoaAZoCWgPQwjcDg2LUYhQQJSGlFKUaBVLkWgWR0ChiEyJKraNdX2UKGgGaAloD0MIpABRMGMTYECUhpRSlGgVTegDaBZHQKGJVVU+9rZ1fZQoaAZoCWgPQwgLmpZYGRdkQJSGlFKUaBVN6ANoFkdAoYsfb9If83V9lChoBmgJaA9DCL+ZmC5EV2VAlIaUUpRoFU3oA2gWR0Chi3cf/3nIdX2UKGgGaAloD0MIbjSAt8DHZkCUhpRSlGgVTegDaBZHQKGLtkYoAn51fZQoaAZoCWgPQwgzNJ4IYj9hQJSGlFKUaBVN6ANoFkdAoYy6J9AoonV9lChoBmgJaA9DCBMteTyt5WFAlIaUUpRoFU3oA2gWR0ChjPm0NSZSdX2UKGgGaAloD0MIzlFHx9VqYkCUhpRSlGgVTegDaBZHQKGP1KPGQ0Z1fZQoaAZoCWgPQwjAIypUt+5lQJSGlFKUaBVN6ANoFkdAoZCMw5/9YXV9lChoBmgJaA9DCAN64c4F9mhAlIaUUpRoFU3oA2gWR0Chkyky+HrRdX2UKGgGaAloD0MIJ4kl5e6dZkCUhpRSlGgVTegDaBZHQKGTvl/6O5t1fZQoaAZoCWgPQwiDv1/MloFfQJSGlFKUaBVN6ANoFkdAoZXPT9bX6XV9lChoBmgJaA9DCB5rRga5OV5AlIaUUpRoFU3oA2gWR0Chlu8Udq+KdX2UKGgGaAloD0MIw5s1eN8WZUCUhpRSlGgVTegDaBZHQKGZGMJhOQB1fZQoaAZoCWgPQwhw0jQomjdjQJSGlFKUaBVN6ANoFkdAoZnlruYx+XV9lChoBmgJaA9DCFBxHHg1xmdAlIaUUpRoFU3oA2gWR0Chm4R02cawdX2UKGgGaAloD0MIdlJflnauZ0CUhpRSlGgVTegDaBZHQKGcFXKbKA91fZQoaAZoCWgPQwi4dqIkJKRwQJSGlFKUaBVNxAJoFkdAoZ2iesgdO3V9lChoBmgJaA9DCMCUgQNaQmZAlIaUUpRoFU3oA2gWR0ChnzTO5avBdX2UKGgGaAloD0MIcHoX70eQY0CUhpRSlGgVTegDaBZHQKGf5oL5RCR1fZQoaAZoCWgPQwjQCgxZXfhkQJSGlFKUaBVN6ANoFkdAoaBuzByjpXVlLg=="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 320,
"n_steps": 2048,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 20,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYy9Vc2Vycy9pZ29yL29wdC9hbmFjb25kYTMvZW52cy9weTM4cmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYy9Vc2Vycy9pZ29yL29wdC9hbmFjb25kYTMvZW52cy9weTM4cmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}