|
|
|
from transformers import T5Tokenizer, T5ForConditionalGeneration |
|
from diffusers import StableDiffusionPipeline |
|
import torch |
|
|
|
|
|
t5_model = T5ForConditionalGeneration.from_pretrained('t5_model') |
|
t5_tokenizer = T5Tokenizer.from_pretrained('t5_tokenizer') |
|
ArtifyAI_model = StableDiffusionPipeline.from_pretrained('.', torch_dtype=torch.float16) |
|
ArtifyAI_model = ArtifyAI_model.to('cuda') |
|
|
|
|
|
def t5_to_image_pipeline(input_text): |
|
|
|
t5_inputs = t5_tokenizer.encode(input_text, return_tensors='pt', truncation=True) |
|
summary_ids = t5_model.generate(t5_inputs, max_length=50, num_beams=5, early_stopping=True) |
|
generated_text = t5_tokenizer.decode(summary_ids[0], skip_special_tokens=True) |
|
|
|
|
|
image = ArtifyAI_model(generated_text).images[0] |
|
return image |
|
|