AhmedMOstaFA10 commited on
Commit
2154b7b
·
verified ·
1 Parent(s): 77d1e2f

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +98 -0
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ArtifyAI: Text-to-Image Generation
2
+
3
+ ArtifyAI is an innovative project that combines the power of Natural Language Processing (NLP) with image generation. This repository implements a pipeline using the T5 Transformer model for text summarization or generation and the Stable Diffusion model for creating images based on the generated text.
4
+
5
+ ## Overview
6
+
7
+ ArtifyAI takes a text input, processes it through a T5 model, and then uses the processed output to generate an image using Stable Diffusion. This allows for seamless conversion of text descriptions into AI-generated images.
8
+
9
+ ## Features
10
+
11
+ - **Text Processing**: Uses T5 (Text-to-Text Transfer Transformer) for summarizing or generating text from user inputs.
12
+ - **Image Generation**: Uses Stable Diffusion to create high-quality images from the text processed by the T5 model.
13
+ - **Combined Pipeline**: A simple Python function combines these models to produce stunning images from text.
14
+
15
+ ## Installation
16
+
17
+ ### Prerequisites
18
+
19
+ To run this project locally, ensure you have the following:
20
+
21
+ 1. Python 3.7+
22
+ 2. CUDA-compatible GPU (for faster performance with Stable Diffusion)
23
+ 3. [Hugging Face Transformers](https://huggingface.co/transformers/) library
24
+ 4. [Diffusers](https://huggingface.co/docs/diffusers/index) for Stable Diffusion
25
+ 5. [PyTorch](https://pytorch.org/) with CUDA support (optional for faster image generation)
26
+
27
+ ### Step-by-Step Setup
28
+
29
+ 1. **Clone the Repository**:
30
+ ```bash
31
+ git clone https://github.com/your-username/ArtifyAI.git
32
+ cd ArtifyAI
33
+ ```
34
+
35
+ 2. **Install Dependencies**:
36
+ It's best to use a virtual environment to manage dependencies.
37
+ ```bash
38
+ pip install torch transformers diffusers
39
+ ```
40
+
41
+ 3. **Download the Pretrained Models**:
42
+ You'll need to load the models locally from Hugging Face. You can either download them using the code inside the notebook or by modifying it as follows:
43
+ ```python
44
+ from transformers import T5Tokenizer, T5ForConditionalGeneration
45
+ from diffusers import StableDiffusionPipeline
46
+ import torch
47
+
48
+ # Load models
49
+ t5_tokenizer = T5Tokenizer.from_pretrained("t5-small")
50
+ t5_model = T5ForConditionalGeneration.from_pretrained("t5-small")
51
+ ArtifyAI_model = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
52
+
53
+ # Set model to GPU (if available)
54
+ ArtifyAI_model = ArtifyAI_model.to("cuda" if torch.cuda.is_available() else "cpu")
55
+ ```
56
+
57
+ 4. **Run the Pipeline**:
58
+ A sample pipeline is included in `pipeline.py`. You can run it using:
59
+ ```bash
60
+ python pipeline.py
61
+ ```
62
+
63
+ 5. **Text to Image Generation**:
64
+ You can generate images from text input using the following function:
65
+ ```python
66
+ def t5_to_image_pipeline(input_text):
67
+ # T5 model processing
68
+ t5_inputs = t5_tokenizer.encode(input_text, return_tensors='pt', truncation=True)
69
+ summary_ids = t5_model.generate(t5_inputs, max_length=50, num_beams=5, early_stopping=True)
70
+ generated_text = t5_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
71
+
72
+ # Generate image from text using Stable Diffusion
73
+ image = ArtifyAI_model(generated_text).images[0]
74
+ return image
75
+ ```
76
+
77
+ ## Usage
78
+
79
+ 1. **Run the Jupyter Notebook**: You can open `ArtifyAI_v1_1.ipynb` in Jupyter to run the code interactively.
80
+ 2. **Save and Load Models**: You can modify the notebook to save your models to Google Drive or a local directory.
81
+ 3. **Custom Inputs**: Modify the text input in the pipeline to generate customized images based on different descriptions.
82
+
83
+ ## Example
84
+
85
+ Here's an example of generating an image from text:
86
+ ```python
87
+ image = t5_to_image_pipeline("A futuristic city skyline at sunset")
88
+ image.show()
89
+
90
+ ## For Non-Technical Users
91
+
92
+ Even if you are new to AI, you can use ArtifyAI by following these simple steps:
93
+
94
+ 1. **Install Python**: Download and install Python 3.7+ from the [official Python website](https://www.python.org/downloads/).
95
+
96
+ 2. **Install Dependencies**: Follow the steps in the Installation section to install necessary packages using the `pip` command.
97
+
98
+ 3. **Run the Code**: You can run the project directly by using the provided code snippets. If you face any issues, you can refer to [Hugging Face](https://huggingface.co/) or [PyTorch](https://pytorch.org/) for troubleshooting.