File size: 3,755 Bytes
ca2ada4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---
library_name: transformers
base_model: cardiffnlp/twitter-roberta-base-sentiment-latest
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: twitter-roberta-base-sentiment-latest_12112024T120259
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# twitter-roberta-base-sentiment-latest_12112024T120259

This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment-latest](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4912
- F1: 0.8803
- Learning Rate: 0.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 600
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | F1     | Rate   |
|:-------------:|:-------:|:----:|:---------------:|:------:|:------:|
| No log        | 0.9942  | 86   | 1.7812          | 0.1230 | 0.0000 |
| No log        | 2.0     | 173  | 1.6480          | 0.3596 | 0.0000 |
| No log        | 2.9942  | 259  | 1.3462          | 0.4748 | 0.0000 |
| No log        | 4.0     | 346  | 1.1145          | 0.5480 | 0.0000 |
| No log        | 4.9942  | 432  | 0.9935          | 0.5877 | 0.0000 |
| 1.3977        | 6.0     | 519  | 0.9023          | 0.6390 | 0.0000 |
| 1.3977        | 6.9942  | 605  | 0.8538          | 0.6798 | 1e-05  |
| 1.3977        | 8.0     | 692  | 0.7381          | 0.7388 | 1e-05  |
| 1.3977        | 8.9942  | 778  | 0.6558          | 0.7696 | 0.0000 |
| 1.3977        | 10.0    | 865  | 0.6072          | 0.7963 | 0.0000 |
| 1.3977        | 10.9942 | 951  | 0.5771          | 0.8139 | 0.0000 |
| 0.6178        | 12.0    | 1038 | 0.5692          | 0.8270 | 0.0000 |
| 0.6178        | 12.9942 | 1124 | 0.5208          | 0.8513 | 0.0000 |
| 0.6178        | 14.0    | 1211 | 0.5416          | 0.8487 | 0.0000 |
| 0.6178        | 14.9942 | 1297 | 0.5073          | 0.8655 | 0.0000 |
| 0.6178        | 16.0    | 1384 | 0.5052          | 0.8740 | 0.0000 |
| 0.6178        | 16.9942 | 1470 | 0.4912          | 0.8803 | 6e-06  |
| 0.2205        | 18.0    | 1557 | 0.5557          | 0.8700 | 0.0000 |
| 0.2205        | 18.9942 | 1643 | 0.5021          | 0.8845 | 0.0000 |
| 0.2205        | 20.0    | 1730 | 0.5382          | 0.8837 | 0.0000 |
| 0.2205        | 20.9942 | 1816 | 0.6147          | 0.8730 | 0.0000 |
| 0.2205        | 22.0    | 1903 | 0.5978          | 0.8762 | 0.0000 |
| 0.2205        | 22.9942 | 1989 | 0.6037          | 0.8756 | 0.0000 |
| 0.0833        | 24.0    | 2076 | 0.6226          | 0.8755 | 0.0000 |
| 0.0833        | 24.9942 | 2162 | 0.6136          | 0.8777 | 0.0000 |
| 0.0833        | 26.0    | 2249 | 0.5938          | 0.8815 | 7e-07  |
| 0.0833        | 26.9942 | 2335 | 0.6318          | 0.8766 | 4e-07  |
| 0.0833        | 28.0    | 2422 | 0.6302          | 0.8783 | 2e-07  |
| 0.0462        | 28.9942 | 2508 | 0.6325          | 0.8777 | 0.0    |
| 0.0462        | 29.8266 | 2580 | 0.6322          | 0.8777 | 0.0    |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.19.1