--- library_name: transformers base_model: cardiffnlp/twitter-roberta-base-sentiment-latest tags: - generated_from_trainer metrics: - f1 model-index: - name: twitter-roberta-base-sentiment-latest_12112024T120259 results: [] --- # twitter-roberta-base-sentiment-latest_12112024T120259 This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment-latest](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4912 - F1: 0.8803 - Learning Rate: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 600 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Rate | |:-------------:|:-------:|:----:|:---------------:|:------:|:------:| | No log | 0.9942 | 86 | 1.7812 | 0.1230 | 0.0000 | | No log | 2.0 | 173 | 1.6480 | 0.3596 | 0.0000 | | No log | 2.9942 | 259 | 1.3462 | 0.4748 | 0.0000 | | No log | 4.0 | 346 | 1.1145 | 0.5480 | 0.0000 | | No log | 4.9942 | 432 | 0.9935 | 0.5877 | 0.0000 | | 1.3977 | 6.0 | 519 | 0.9023 | 0.6390 | 0.0000 | | 1.3977 | 6.9942 | 605 | 0.8538 | 0.6798 | 1e-05 | | 1.3977 | 8.0 | 692 | 0.7381 | 0.7388 | 1e-05 | | 1.3977 | 8.9942 | 778 | 0.6558 | 0.7696 | 0.0000 | | 1.3977 | 10.0 | 865 | 0.6072 | 0.7963 | 0.0000 | | 1.3977 | 10.9942 | 951 | 0.5771 | 0.8139 | 0.0000 | | 0.6178 | 12.0 | 1038 | 0.5692 | 0.8270 | 0.0000 | | 0.6178 | 12.9942 | 1124 | 0.5208 | 0.8513 | 0.0000 | | 0.6178 | 14.0 | 1211 | 0.5416 | 0.8487 | 0.0000 | | 0.6178 | 14.9942 | 1297 | 0.5073 | 0.8655 | 0.0000 | | 0.6178 | 16.0 | 1384 | 0.5052 | 0.8740 | 0.0000 | | 0.6178 | 16.9942 | 1470 | 0.4912 | 0.8803 | 6e-06 | | 0.2205 | 18.0 | 1557 | 0.5557 | 0.8700 | 0.0000 | | 0.2205 | 18.9942 | 1643 | 0.5021 | 0.8845 | 0.0000 | | 0.2205 | 20.0 | 1730 | 0.5382 | 0.8837 | 0.0000 | | 0.2205 | 20.9942 | 1816 | 0.6147 | 0.8730 | 0.0000 | | 0.2205 | 22.0 | 1903 | 0.5978 | 0.8762 | 0.0000 | | 0.2205 | 22.9942 | 1989 | 0.6037 | 0.8756 | 0.0000 | | 0.0833 | 24.0 | 2076 | 0.6226 | 0.8755 | 0.0000 | | 0.0833 | 24.9942 | 2162 | 0.6136 | 0.8777 | 0.0000 | | 0.0833 | 26.0 | 2249 | 0.5938 | 0.8815 | 7e-07 | | 0.0833 | 26.9942 | 2335 | 0.6318 | 0.8766 | 4e-07 | | 0.0833 | 28.0 | 2422 | 0.6302 | 0.8783 | 2e-07 | | 0.0462 | 28.9942 | 2508 | 0.6325 | 0.8777 | 0.0 | | 0.0462 | 29.8266 | 2580 | 0.6322 | 0.8777 | 0.0 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.19.1