--- library_name: transformers base_model: cardiffnlp/twitter-roberta-base-sentiment-latest tags: - generated_from_trainer metrics: - f1 model-index: - name: twitter-roberta-base-sentiment-latest_12112024T123630 results: [] --- # twitter-roberta-base-sentiment-latest_12112024T123630 This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment-latest](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5160 - F1: 0.8689 - Learning Rate: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 600 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Rate | |:-------------:|:-------:|:----:|:---------------:|:------:|:------:| | No log | 0.9942 | 43 | 1.7742 | 0.1656 | 7e-07 | | No log | 1.9884 | 86 | 1.7368 | 0.2208 | 0.0000 | | No log | 2.9827 | 129 | 1.6531 | 0.3182 | 0.0000 | | No log | 4.0 | 173 | 1.5111 | 0.4169 | 0.0000 | | No log | 4.9942 | 216 | 1.3427 | 0.4913 | 0.0000 | | No log | 5.9884 | 259 | 1.1750 | 0.5379 | 0.0000 | | No log | 6.9827 | 302 | 1.0970 | 0.5486 | 5e-06 | | No log | 8.0 | 346 | 1.0081 | 0.5856 | 0.0000 | | No log | 8.9942 | 389 | 0.9728 | 0.5991 | 0.0000 | | No log | 9.9884 | 432 | 0.9005 | 0.6481 | 0.0000 | | No log | 10.9827 | 475 | 0.8614 | 0.6640 | 0.0000 | | 1.2671 | 12.0 | 519 | 0.7905 | 0.7202 | 0.0000 | | 1.2671 | 12.9942 | 562 | 0.7560 | 0.7367 | 0.0000 | | 1.2671 | 13.9884 | 605 | 0.7399 | 0.7421 | 1e-05 | | 1.2671 | 14.9827 | 648 | 0.6596 | 0.7804 | 0.0000 | | 1.2671 | 16.0 | 692 | 0.6331 | 0.7966 | 0.0000 | | 1.2671 | 16.9942 | 735 | 0.6272 | 0.7994 | 0.0000 | | 1.2671 | 17.9884 | 778 | 0.5878 | 0.8249 | 0.0000 | | 1.2671 | 18.9827 | 821 | 0.5564 | 0.8386 | 0.0000 | | 1.2671 | 20.0 | 865 | 0.5482 | 0.8474 | 0.0000 | | 1.2671 | 20.9942 | 908 | 0.5523 | 0.8501 | 0.0000 | | 1.2671 | 21.9884 | 951 | 0.5309 | 0.8534 | 0.0000 | | 1.2671 | 22.9827 | 994 | 0.5364 | 0.8582 | 4e-06 | | 0.4473 | 24.0 | 1038 | 0.5176 | 0.8638 | 3e-06 | | 0.4473 | 24.9942 | 1081 | 0.5256 | 0.8663 | 0.0000 | | 0.4473 | 25.9884 | 1124 | 0.5182 | 0.8691 | 0.0000 | | 0.4473 | 26.9827 | 1167 | 0.5237 | 0.8680 | 8e-07 | | 0.4473 | 28.0 | 1211 | 0.5160 | 0.8689 | 3e-07 | | 0.4473 | 28.9942 | 1254 | 0.5216 | 0.8673 | 1e-07 | | 0.4473 | 29.8266 | 1290 | 0.5220 | 0.8670 | 0.0 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.19.1