File size: 1,473 Bytes
0c9e835 06e689b 0c9e835 06e689b 0da8e93 06e689b fc673dc 06e689b b329f0a 06e689b b329f0a 06e689b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
---
license: apache-2.0
datasets:
- In2Training/VaLProbing-32K
language:
- en
---
# FILM-7B
<p align="center">
💻 <a href="https://github.com/microsoft/FILM/" target="_blank">[Github Repo]</a> • 📃 <a href="https://arxiv.org/abs/xxx" target="_blank">[Paper]</a> • 🤗 <a href="https://huggingface.co/datasets/In2Training/VaLProbing-32K" target="_blank">[https://huggingface.co/datasets/In2Training/VaLProbing-32K] </a>
</p>
**FILM-7B** is a 32K-context LLM that overcomes the lost-in-the-middle problem on [VaLProbing-32K](https://huggingface.co/datasets/In2Training/VaLProbing-32K/).
It is trained from Mistral-7B-Instruct-v0.2 by applying Information-Intensie (In2) Training.
FILM-7B achieves SOTA-level performance on real-world long-context tasks among ~7B size LLMs and does not compromise the short-context performance.
## Model Usage
The system tempelate for FILM-7B:
```text
[INST] Below is a context and an instruction. Based on the information provided in the context, write a response for the instruction.
### Context:
{YOUR LONG CONTEXT}
### Instruction:
{YOUR QUESTION & INSTRUCTION} [/INST]
```
## Probing Results
<p align="center">
<img src="./figures/probing_results.png" width="800">
<br>
</p>
## Real-World Long-Context Tasks
<p align="center">
<img src="./figures/real_world_long.png" width="800">
<br>
</p>
## Short-Context Tasks
<p align="center">
<img src="./figures/short.png" width="800">
<br>
</p>
|