File size: 1,473 Bytes
0c9e835
 
06e689b
 
 
 
0c9e835
06e689b
 
 
 
0da8e93
06e689b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc673dc
 
 
 
06e689b
b329f0a
06e689b
b329f0a
 
 
 
 
 
 
 
 
 
 
06e689b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
---
license: apache-2.0
datasets:
- In2Training/VaLProbing-32K
language:
- en
---

# FILM-7B

<p align="center">
   💻 <a href="https://github.com/microsoft/FILM/" target="_blank">[Github Repo]</a> • 📃 <a href="https://arxiv.org/abs/xxx" target="_blank">[Paper]</a> • 🤗 <a href="https://huggingface.co/datasets/In2Training/VaLProbing-32K" target="_blank">[https://huggingface.co/datasets/In2Training/VaLProbing-32K] </a>
</p>

**FILM-7B** is a 32K-context LLM that overcomes the lost-in-the-middle problem on [VaLProbing-32K](https://huggingface.co/datasets/In2Training/VaLProbing-32K/).
It is trained from Mistral-7B-Instruct-v0.2 by applying Information-Intensie (In2) Training.
FILM-7B achieves SOTA-level performance on real-world long-context tasks among ~7B size LLMs and does not compromise the short-context performance.

## Model Usage

The system tempelate for FILM-7B:
```text
[INST] Below is a context and an instruction. Based on the information provided in the context, write a response for the instruction.

### Context:
{YOUR LONG CONTEXT}

### Instruction:
{YOUR QUESTION & INSTRUCTION} [/INST]
```

## Probing Results

<p align="center">
    <img src="./figures/probing_results.png" width="800">
    <br>
</p>

## Real-World Long-Context Tasks

<p align="center">
    <img src="./figures/real_world_long.png" width="800">
    <br>
</p>

## Short-Context Tasks

<p align="center">
    <img src="./figures/short.png" width="800">
    <br>
</p>