ShengnanAn
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -12,7 +12,7 @@ language:
|
|
12 |
π» <a href="https://github.com/microsoft/FILM/" target="_blank">[Github Repo]</a> β’ π <a href="https://arxiv.org/abs/xxx" target="_blank">[Paper]</a> β’ π€ <a href="https://huggingface.co/datasets/In2Training/VaLProbing-32K" target="_blank">[VaLProbing-32K] </a>
|
13 |
</p>
|
14 |
|
15 |
-
**FILM-7B** is a 32K-context LLM that overcomes the lost-in-the-middle problem
|
16 |
It is trained from Mistral-7B-Instruct-v0.2 by applying Information-Intensie (In2) Training.
|
17 |
FILM-7B achieves SOTA-level performance on real-world long-context tasks among ~7B size LLMs and does not compromise the short-context performance.
|
18 |
|
|
|
12 |
π» <a href="https://github.com/microsoft/FILM/" target="_blank">[Github Repo]</a> β’ π <a href="https://arxiv.org/abs/xxx" target="_blank">[Paper]</a> β’ π€ <a href="https://huggingface.co/datasets/In2Training/VaLProbing-32K" target="_blank">[VaLProbing-32K] </a>
|
13 |
</p>
|
14 |
|
15 |
+
**FILM-7B** is a 32K-context LLM that overcomes the lost-in-the-middle problem.
|
16 |
It is trained from Mistral-7B-Instruct-v0.2 by applying Information-Intensie (In2) Training.
|
17 |
FILM-7B achieves SOTA-level performance on real-world long-context tasks among ~7B size LLMs and does not compromise the short-context performance.
|
18 |
|