update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- lc_quad
|
7 |
+
model-index:
|
8 |
+
- name: flan-t5-text2sparql-custom-tokenizer
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# flan-t5-text2sparql-custom-tokenizer
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the lc_quad dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.8039
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 0.0001
|
39 |
+
- train_batch_size: 16
|
40 |
+
- eval_batch_size: 16
|
41 |
+
- seed: 42
|
42 |
+
- gradient_accumulation_steps: 4
|
43 |
+
- total_train_batch_size: 64
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- num_epochs: 50
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
51 |
+
|:-------------:|:-----:|:-----:|:---------------:|
|
52 |
+
| No log | 1.0 | 301 | 2.6503 |
|
53 |
+
| 3.2271 | 2.0 | 602 | 2.3894 |
|
54 |
+
| 3.2271 | 3.0 | 903 | 2.2532 |
|
55 |
+
| 2.3957 | 4.0 | 1204 | 2.1631 |
|
56 |
+
| 2.18 | 5.0 | 1505 | 2.0788 |
|
57 |
+
| 2.18 | 6.0 | 1806 | 2.0195 |
|
58 |
+
| 2.0209 | 7.0 | 2107 | 1.9681 |
|
59 |
+
| 2.0209 | 8.0 | 2408 | 1.9353 |
|
60 |
+
| 1.9087 | 9.0 | 2709 | 1.8936 |
|
61 |
+
| 1.8114 | 10.0 | 3010 | 1.8683 |
|
62 |
+
| 1.8114 | 11.0 | 3311 | 1.8556 |
|
63 |
+
| 1.7254 | 12.0 | 3612 | 1.8284 |
|
64 |
+
| 1.7254 | 13.0 | 3913 | 1.8099 |
|
65 |
+
| 1.6556 | 14.0 | 4214 | 1.7932 |
|
66 |
+
| 1.5891 | 15.0 | 4515 | 1.7823 |
|
67 |
+
| 1.5891 | 16.0 | 4816 | 1.7691 |
|
68 |
+
| 1.528 | 17.0 | 5117 | 1.7569 |
|
69 |
+
| 1.528 | 18.0 | 5418 | 1.7578 |
|
70 |
+
| 1.4784 | 19.0 | 5719 | 1.7561 |
|
71 |
+
| 1.4288 | 20.0 | 6020 | 1.7514 |
|
72 |
+
| 1.4288 | 21.0 | 6321 | 1.7372 |
|
73 |
+
| 1.3793 | 22.0 | 6622 | 1.7318 |
|
74 |
+
| 1.3793 | 23.0 | 6923 | 1.7244 |
|
75 |
+
| 1.3436 | 24.0 | 7224 | 1.7382 |
|
76 |
+
| 1.3073 | 25.0 | 7525 | 1.7254 |
|
77 |
+
| 1.3073 | 26.0 | 7826 | 1.7494 |
|
78 |
+
| 1.2692 | 27.0 | 8127 | 1.7378 |
|
79 |
+
| 1.2692 | 28.0 | 8428 | 1.7387 |
|
80 |
+
| 1.242 | 29.0 | 8729 | 1.7290 |
|
81 |
+
| 1.2107 | 30.0 | 9030 | 1.7391 |
|
82 |
+
| 1.2107 | 31.0 | 9331 | 1.7458 |
|
83 |
+
| 1.1817 | 32.0 | 9632 | 1.7528 |
|
84 |
+
| 1.1817 | 33.0 | 9933 | 1.7521 |
|
85 |
+
| 1.1661 | 34.0 | 10234 | 1.7672 |
|
86 |
+
| 1.136 | 35.0 | 10535 | 1.7594 |
|
87 |
+
| 1.136 | 36.0 | 10836 | 1.7564 |
|
88 |
+
| 1.1216 | 37.0 | 11137 | 1.7670 |
|
89 |
+
| 1.1216 | 38.0 | 11438 | 1.7724 |
|
90 |
+
| 1.1031 | 39.0 | 11739 | 1.7766 |
|
91 |
+
| 1.0834 | 40.0 | 12040 | 1.7756 |
|
92 |
+
| 1.0834 | 41.0 | 12341 | 1.7786 |
|
93 |
+
| 1.0707 | 42.0 | 12642 | 1.7947 |
|
94 |
+
| 1.0707 | 43.0 | 12943 | 1.7931 |
|
95 |
+
| 1.058 | 44.0 | 13244 | 1.7925 |
|
96 |
+
| 1.0489 | 45.0 | 13545 | 1.7939 |
|
97 |
+
| 1.0489 | 46.0 | 13846 | 1.7969 |
|
98 |
+
| 1.0421 | 47.0 | 14147 | 1.7982 |
|
99 |
+
| 1.0421 | 48.0 | 14448 | 1.7994 |
|
100 |
+
| 1.0357 | 49.0 | 14749 | 1.8018 |
|
101 |
+
| 1.03 | 50.0 | 15050 | 1.8039 |
|
102 |
+
|
103 |
+
|
104 |
+
### Framework versions
|
105 |
+
|
106 |
+
- Transformers 4.18.0
|
107 |
+
- Pytorch 1.10.2+cu102
|
108 |
+
- Datasets 2.4.0
|
109 |
+
- Tokenizers 0.12.1
|