File size: 1,872 Bytes
65e6ef6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
base_model: google-t5/t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: test_sum_1_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# test_sum_1_model

This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8708
- Rouge1: 0.3843
- Rouge2: 0.2726
- Rougel: 0.3466
- Rougelsum: 0.3464
- Gen Len: 18.9887

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 1.0502        | 1.0   | 1764 | 0.9356          | 0.3818 | 0.2695 | 0.3439 | 0.3438    | 18.9816 |
| 0.9636        | 2.0   | 3528 | 0.8917          | 0.3838 | 0.2717 | 0.3461 | 0.3461    | 18.9851 |
| 0.9552        | 3.0   | 5292 | 0.8762          | 0.3839 | 0.272  | 0.346  | 0.3458    | 18.9877 |
| 0.9289        | 4.0   | 7056 | 0.8708          | 0.3843 | 0.2726 | 0.3466 | 0.3464    | 18.9887 |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2