IngeniousArtist
commited on
Commit
·
7158dee
1
Parent(s):
1ed4a10
update model card README.md
Browse files
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the financial_phrasebank dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.
|
36 |
-
- Accuracy: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -57,43 +57,43 @@ The following hyperparameters were used during training:
|
|
57 |
- eval_batch_size: 64
|
58 |
- seed: 42
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
-
- lr_scheduler_type:
|
61 |
- num_epochs: 10
|
62 |
|
63 |
### Training results
|
64 |
|
65 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
|
98 |
|
99 |
### Framework versions
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.7386363636363636
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the financial_phrasebank dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.9962
|
36 |
+
- Accuracy: 0.7386
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
57 |
- eval_batch_size: 64
|
58 |
- seed: 42
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: cosine
|
61 |
- num_epochs: 10
|
62 |
|
63 |
### Training results
|
64 |
|
65 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
67 |
+
| 0.904 | 0.33 | 20 | 1.5959 | 0.4205 |
|
68 |
+
| 0.6562 | 0.66 | 40 | 1.6665 | 0.4143 |
|
69 |
+
| 0.539 | 0.98 | 60 | 1.6067 | 0.3936 |
|
70 |
+
| 0.4759 | 1.31 | 80 | 1.5079 | 0.4236 |
|
71 |
+
| 0.3882 | 1.64 | 100 | 1.4719 | 0.4298 |
|
72 |
+
| 0.3782 | 1.97 | 120 | 1.2392 | 0.4267 |
|
73 |
+
| 0.2729 | 2.3 | 140 | 1.0114 | 0.4928 |
|
74 |
+
| 0.2607 | 2.62 | 160 | 0.9514 | 0.5930 |
|
75 |
+
| 0.2889 | 2.95 | 180 | 0.8661 | 0.6477 |
|
76 |
+
| 0.181 | 3.28 | 200 | 0.7093 | 0.7417 |
|
77 |
+
| 0.1742 | 3.61 | 220 | 1.1042 | 0.5764 |
|
78 |
+
| 0.1904 | 3.93 | 240 | 0.7439 | 0.7510 |
|
79 |
+
| 0.1186 | 4.26 | 260 | 0.8587 | 0.7469 |
|
80 |
+
| 0.137 | 4.59 | 280 | 0.7408 | 0.7603 |
|
81 |
+
| 0.1166 | 4.92 | 300 | 1.0107 | 0.6705 |
|
82 |
+
| 0.0938 | 5.25 | 320 | 0.7883 | 0.7624 |
|
83 |
+
| 0.0881 | 5.57 | 340 | 1.0339 | 0.7056 |
|
84 |
+
| 0.0812 | 5.9 | 360 | 0.8409 | 0.7490 |
|
85 |
+
| 0.0586 | 6.23 | 380 | 0.9146 | 0.7345 |
|
86 |
+
| 0.0572 | 6.56 | 400 | 0.9000 | 0.7366 |
|
87 |
+
| 0.0527 | 6.89 | 420 | 0.9782 | 0.7335 |
|
88 |
+
| 0.045 | 7.21 | 440 | 1.0102 | 0.7262 |
|
89 |
+
| 0.0471 | 7.54 | 460 | 1.0322 | 0.7324 |
|
90 |
+
| 0.0508 | 7.87 | 480 | 0.9381 | 0.7448 |
|
91 |
+
| 0.039 | 8.2 | 500 | 0.9489 | 0.7459 |
|
92 |
+
| 0.0419 | 8.52 | 520 | 0.9779 | 0.7469 |
|
93 |
+
| 0.0256 | 8.85 | 540 | 0.9834 | 0.7407 |
|
94 |
+
| 0.0264 | 9.18 | 560 | 0.9963 | 0.7376 |
|
95 |
+
| 0.0378 | 9.51 | 580 | 0.9981 | 0.7376 |
|
96 |
+
| 0.0421 | 9.84 | 600 | 0.9962 | 0.7386 |
|
97 |
|
98 |
|
99 |
### Framework versions
|