File size: 12,403 Bytes
1b644d1 5dd5c4c 1b644d1 5dd5c4c 1b644d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
import logging
from typing import Any, Optional
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F # noqa: N812
from transformers import PretrainedConfig, PreTrainedModel
class MultiHeadAttention(nn.Module):
def __init__(
self,
num_heads: int,
key_size: int,
add_bias_kv: bool = False,
value_size: Optional[int] = None,
model_size: Optional[int] = None,
name: Optional[str] = None,
):
super().__init__()
if not model_size:
model_size = key_size
if not value_size:
value_size = key_size
self.model_size = model_size
self.key_size = key_size
self.value_size = value_size
self.add_bias_kv = add_bias_kv
self.name = name
self.num_heads = num_heads
self.w_k = nn.Linear(self.model_size, self.num_heads * self.key_size)
self.w_q = nn.Linear(self.model_size, self.num_heads * self.key_size)
self.w_v = nn.Linear(self.model_size, self.num_heads * self.value_size)
self.output = nn.Linear(self.num_heads * self.value_size, self.model_size)
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
attention_weight_bias: Optional[torch.Tensor] = None,
) -> dict[str, torch.Tensor]:
"""
Returns:
dictionary containing attention weights
and outputs.
"""
key_heads = self.w_k(key).reshape(
(*key.shape[:-1], self.num_heads, self.key_size)
)
query_heads = self.w_q(query).reshape(
(*query.shape[:-1], self.num_heads, self.key_size)
)
value_heads = self.w_v(value).reshape(
(*value.shape[:-1], self.num_heads, self.value_size)
)
attention_weights = torch.einsum(
"...thd, ...Thd -> ...htT", query_heads, key_heads
)
sqrt_key_size = np.sqrt(self.key_size)
attention_weights = attention_weights / sqrt_key_size
if attention_mask is not None:
attention_weights = torch.where(attention_mask, attention_weights, -1e30)
if attention_weight_bias:
attention_weights = F.softmax(
attention_weights + attention_weight_bias, dim=-1
)
else:
attention_weights = F.softmax(attention_weights, dim=-1)
value_out = torch.einsum(
"...htT, ...Thd->...thd", attention_weights, value_heads
)
value_out = value_out.reshape((*value_out.shape[:-2], -1))
embeddings = self.output(value_out)
return {"attention_weights": attention_weights, "embeddings": embeddings}
class SelfAttentionBlock(nn.Module):
def __init__(
self,
num_heads: int,
embed_dim: int,
ffn_embed_dim: int,
key_size: Optional[int] = None,
add_bias_kv: bool = False,
add_bias_fnn: bool = True,
ffn_activation_name: str = "gelu-no-approx",
use_glu_in_ffn: bool = False,
layer_norm_eps: float = 1e-5, # this is the default haiku value
pre_layer_norm: bool = True,
name: Optional[str] = None,
):
super().__init__()
if key_size is None:
if embed_dim % num_heads != 0:
raise ValueError(
f"The embedding dimension should be divisible by the number of "
f"heads, however provided embedding dimension is {embed_dim} and "
f"the number of heads is {num_heads}."
)
else:
key_size = embed_dim // num_heads
# Get ffn activation function
self._pre_layer_norm = pre_layer_norm
self._use_glu_in_fnn = use_glu_in_ffn
# Define layers
if use_glu_in_ffn:
# user should multiply ffn_embed_dim by 2/3 when using GLU
# to keep total number of parameters equal
# see https://arxiv.org/pdf/2002.05202.pdf. for more details
# we multiply by 2 here as the output will be split in 2 for GLU
self.fc1 = nn.Linear(embed_dim, int(2 * ffn_embed_dim), bias=add_bias_fnn)
else:
self.fc1 = nn.Linear(embed_dim, ffn_embed_dim, bias=add_bias_fnn)
self.fc2 = nn.Linear(ffn_embed_dim, embed_dim, bias=add_bias_fnn)
self.layer_norm_self_attention = nn.LayerNorm(
embed_dim,
)
self.layer_norm_mlp = nn.LayerNorm(embed_dim)
if ffn_activation_name == "swish":
self._ffn_activation_fn = nn.SiLU()
elif ffn_activation_name == "gelu-no-approx":
self._ffn_activation_fn = lambda x: F.gelu(x, approximate="none")
else:
self._ffn_activation_fn = getattr(torch.nn, ffn_activation_name)
self.mha = MultiHeadAttention(
num_heads=num_heads,
key_size=key_size,
add_bias_kv=add_bias_kv,
model_size=embed_dim,
name="self_attention",
)
def mlp(self, embed: torch.Tensor) -> torch.Tensor:
if self._pre_layer_norm:
x = self.layer_norm_mlp(embed)
else:
x = embed
if self._use_glu_in_fnn:
x = self.fc1(x)
x1, x2 = torch.split(x, split_size_or_sections=x.shape[-1] // 2, dim=-1)
x = self._ffn_activation_fn(x1) * x2
else:
x = self._ffn_activation_fn(self.fc1(x))
x = self.fc2(x)
if not self._pre_layer_norm:
x = self.layer_norm_mlp(x + embed)
return x
def forward(
self,
x: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
attention_weight_bias: Optional[torch.Tensor] = None,
) -> torch.Tensor:
res = x
if self._pre_layer_norm:
x = self.layer_norm_self_attention(x)
output = self.mha(
x,
x,
x,
attention_mask=attention_mask,
attention_weight_bias=attention_weight_bias,
)
if not self._pre_layer_norm:
output["embeddings"] = self.layer_norm_self_attention(
output["embeddings"] + res
)
x = output["embeddings"]
else:
x = output["embeddings"]
x = res + x
# MLP
if not self._pre_layer_norm:
x = self.mlp(x)
else:
x = x + self.mlp(x)
output["embeddings"] = x
return output
class BulkRNABertConfig(PretrainedConfig):
model_type = "BulkRNABert"
def __init__(self, **kwargs: Any) -> None:
super().__init__(**kwargs)
self.n_genes = kwargs.get("n_genes", 19_062)
self.n_expressions_bins = kwargs.get("n_expressions_bins", 64)
self.embed_dim = kwargs.get("embed_dim", 256)
self.init_gene_embed_dim = kwargs.get("init_gene_embed_dim", 200)
self.use_gene_embedding = kwargs.get("use_gene_embedding", True)
self.project_gene_embedding = kwargs.get("project_gene_embedding", True)
self.num_attention_heads = kwargs.get("num_attention_heads", 8)
self.key_size = kwargs.get("key_size", None)
self.ffn_embed_dim = kwargs.get("ffn_embed_dim", 512)
self.num_layers = kwargs.get("num_layers", 4)
# return
self.embeddings_layers_to_save: tuple[int, ...] = kwargs.get(
"embeddings_layers_to_save", ()
)
self.attention_maps_to_save: list[tuple[int, int]] = kwargs.get(
"attention_maps_to_save", []
)
self.__post_init__()
def __post_init__(self):
# Validate attention key size
key_size = self.key_size
if key_size is None:
embed_dim = self.embed_dim
num_attention_heads = self.num_attention_heads
if not embed_dim % num_attention_heads == 0:
raise ValueError(
f"When no key size is provided, the embedding dimension should be "
f"divisible by the number of heads, however provided embedding "
f"dimension is {embed_dim} and the number of heads is "
f"{num_attention_heads}."
)
self.key_size = embed_dim // num_attention_heads
# Validate gene embedding projection
use_gene_embedding = self.use_gene_embedding
if use_gene_embedding:
init_gene_embed_dim = self.init_gene_embed_dim
embed_dim = self.embed_dim
if init_gene_embed_dim != embed_dim:
project_gene_embedding = self.project_gene_embedding
if not project_gene_embedding:
logging.warning(
f"Init gene embedding dimension ({init_gene_embed_dim})"
f"different than embedding dimension ({embed_dim})."
f"Setting `project_gene_embedding` to True"
)
self.project_gene_embedding = True
class BulkRNABert(PreTrainedModel):
config_class = BulkRNABertConfig
def __init__(self, config: BulkRNABertConfig):
super().__init__(config=config)
self.expression_embedding_layer = nn.Embedding(
config.n_expressions_bins, config.embed_dim
)
self.gene_embedding_layer = nn.Embedding(
config.n_genes,
config.init_gene_embed_dim,
)
self.fc_gene_embedding = nn.Linear(config.init_gene_embed_dim, config.embed_dim)
attention_maps_to_save = config.attention_maps_to_save
self._attention_layers_to_save = list({t[0] for t in attention_maps_to_save})
self._attention_maps_per_layer_to_save = {
layer: [t[1] for t in attention_maps_to_save if t[0] == layer]
for layer in self._attention_layers_to_save
}
max_layer = max(self._attention_layers_to_save + [0])
if max_layer > config.num_layers:
raise ValueError(
f"You are requiring attention maps for layer {max_layer}, "
f"while the model has {config.num_layers} layers only."
)
self.transformer_layers = nn.ModuleList(
[
SelfAttentionBlock(
num_heads=config.num_attention_heads,
embed_dim=config.embed_dim,
key_size=config.key_size,
ffn_embed_dim=config.ffn_embed_dim,
name=f"attention_layer_{layer_idx}",
)
for layer_idx in range(config.num_layers)
]
)
self.lm_head = nn.Linear(config.embed_dim, config.n_expressions_bins)
def forward(
self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None
) -> dict[str, torch.Tensor]:
outs = {}
x = self.expression_embedding_layer(input_ids)
if self.config.use_gene_embedding:
gene_indices = torch.arange(self.config.n_genes, device=x.device)
gene_embedding = self.gene_embedding_layer(gene_indices)
if self.config.project_gene_embedding:
gene_embedding = self.fc_gene_embedding(gene_embedding)
x = x + gene_embedding
if attention_mask is None:
batch_size, seq_length = input_ids.shape
attention_mask = torch.ones( # noqa
(batch_size, 1, seq_length, seq_length),
device=input_ids.device,
dtype=bool,
)
for layer_idx, transformer in enumerate(self.transformer_layers):
output = transformer(x, attention_mask=attention_mask)
x = output["embeddings"]
if (layer_idx + 1) in self.config.embeddings_layers_to_save:
outs[f"embeddings_{(layer_idx + 1)}"] = output["embeddings"]
if (layer_idx + 1) in self._attention_layers_to_save:
for map_number in self._attention_maps_per_layer_to_save[layer_idx + 1]:
dkey = f"attention_map_layer_{layer_idx + 1}_number_{map_number}"
outs[dkey] = output["attention_weights"][:, map_number + 1]
outs["logits"] = self.lm_head(x)
return outs
|