File size: 12,403 Bytes
1b644d1
5dd5c4c
1b644d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5dd5c4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b644d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import logging
from typing import Any, Optional

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F  # noqa: N812
from transformers import PretrainedConfig, PreTrainedModel


class MultiHeadAttention(nn.Module):
    def __init__(
        self,
        num_heads: int,
        key_size: int,
        add_bias_kv: bool = False,
        value_size: Optional[int] = None,
        model_size: Optional[int] = None,
        name: Optional[str] = None,
    ):
        super().__init__()
        if not model_size:
            model_size = key_size
        if not value_size:
            value_size = key_size
        self.model_size = model_size
        self.key_size = key_size
        self.value_size = value_size
        self.add_bias_kv = add_bias_kv
        self.name = name
        self.num_heads = num_heads

        self.w_k = nn.Linear(self.model_size, self.num_heads * self.key_size)
        self.w_q = nn.Linear(self.model_size, self.num_heads * self.key_size)
        self.w_v = nn.Linear(self.model_size, self.num_heads * self.value_size)
        self.output = nn.Linear(self.num_heads * self.value_size, self.model_size)

    def forward(
        self,
        query: torch.Tensor,
        key: torch.Tensor,
        value: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        attention_weight_bias: Optional[torch.Tensor] = None,
    ) -> dict[str, torch.Tensor]:
        """
        Returns:
            dictionary containing attention weights
            and outputs.
        """
        key_heads = self.w_k(key).reshape(
            (*key.shape[:-1], self.num_heads, self.key_size)
        )
        query_heads = self.w_q(query).reshape(
            (*query.shape[:-1], self.num_heads, self.key_size)
        )
        value_heads = self.w_v(value).reshape(
            (*value.shape[:-1], self.num_heads, self.value_size)
        )
        attention_weights = torch.einsum(
            "...thd, ...Thd -> ...htT", query_heads, key_heads
        )
        sqrt_key_size = np.sqrt(self.key_size)
        attention_weights = attention_weights / sqrt_key_size
        if attention_mask is not None:
            attention_weights = torch.where(attention_mask, attention_weights, -1e30)
        if attention_weight_bias:
            attention_weights = F.softmax(
                attention_weights + attention_weight_bias, dim=-1
            )
        else:
            attention_weights = F.softmax(attention_weights, dim=-1)
        value_out = torch.einsum(
            "...htT, ...Thd->...thd", attention_weights, value_heads
        )
        value_out = value_out.reshape((*value_out.shape[:-2], -1))
        embeddings = self.output(value_out)

        return {"attention_weights": attention_weights, "embeddings": embeddings}


class SelfAttentionBlock(nn.Module):
    def __init__(
        self,
        num_heads: int,
        embed_dim: int,
        ffn_embed_dim: int,
        key_size: Optional[int] = None,
        add_bias_kv: bool = False,
        add_bias_fnn: bool = True,
        ffn_activation_name: str = "gelu-no-approx",
        use_glu_in_ffn: bool = False,
        layer_norm_eps: float = 1e-5,  # this is the default haiku value
        pre_layer_norm: bool = True,
        name: Optional[str] = None,
    ):
        super().__init__()
        if key_size is None:
            if embed_dim % num_heads != 0:
                raise ValueError(
                    f"The embedding dimension should be divisible by the number of "
                    f"heads, however provided embedding dimension is {embed_dim} and "
                    f"the number of heads is {num_heads}."
                )
            else:
                key_size = embed_dim // num_heads

        # Get ffn activation function
        self._pre_layer_norm = pre_layer_norm
        self._use_glu_in_fnn = use_glu_in_ffn
        # Define layers
        if use_glu_in_ffn:
            # user should multiply ffn_embed_dim by 2/3 when using GLU
            # to keep total number of parameters equal
            # see https://arxiv.org/pdf/2002.05202.pdf. for more details
            # we multiply by 2 here as the output will be split in 2 for GLU
            self.fc1 = nn.Linear(embed_dim, int(2 * ffn_embed_dim), bias=add_bias_fnn)
        else:
            self.fc1 = nn.Linear(embed_dim, ffn_embed_dim, bias=add_bias_fnn)

        self.fc2 = nn.Linear(ffn_embed_dim, embed_dim, bias=add_bias_fnn)

        self.layer_norm_self_attention = nn.LayerNorm(
            embed_dim,
        )
        self.layer_norm_mlp = nn.LayerNorm(embed_dim)
        if ffn_activation_name == "swish":
            self._ffn_activation_fn = nn.SiLU()
        elif ffn_activation_name == "gelu-no-approx":
            self._ffn_activation_fn = lambda x: F.gelu(x, approximate="none")
        else:
            self._ffn_activation_fn = getattr(torch.nn, ffn_activation_name)

        self.mha = MultiHeadAttention(
            num_heads=num_heads,
            key_size=key_size,
            add_bias_kv=add_bias_kv,
            model_size=embed_dim,
            name="self_attention",
        )

    def mlp(self, embed: torch.Tensor) -> torch.Tensor:

        if self._pre_layer_norm:
            x = self.layer_norm_mlp(embed)
        else:
            x = embed

        if self._use_glu_in_fnn:
            x = self.fc1(x)
            x1, x2 = torch.split(x, split_size_or_sections=x.shape[-1] // 2, dim=-1)
            x = self._ffn_activation_fn(x1) * x2
        else:
            x = self._ffn_activation_fn(self.fc1(x))
        x = self.fc2(x)

        if not self._pre_layer_norm:
            x = self.layer_norm_mlp(x + embed)
        return x

    def forward(
        self,
        x: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        attention_weight_bias: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:

        res = x
        if self._pre_layer_norm:
            x = self.layer_norm_self_attention(x)

        output = self.mha(
            x,
            x,
            x,
            attention_mask=attention_mask,
            attention_weight_bias=attention_weight_bias,
        )

        if not self._pre_layer_norm:
            output["embeddings"] = self.layer_norm_self_attention(
                output["embeddings"] + res
            )

            x = output["embeddings"]
        else:
            x = output["embeddings"]
            x = res + x

        # MLP
        if not self._pre_layer_norm:
            x = self.mlp(x)
        else:
            x = x + self.mlp(x)

        output["embeddings"] = x
        return output


class BulkRNABertConfig(PretrainedConfig):
    model_type = "BulkRNABert"

    def __init__(self, **kwargs: Any) -> None:
        super().__init__(**kwargs)
        self.n_genes = kwargs.get("n_genes", 19_062)
        self.n_expressions_bins = kwargs.get("n_expressions_bins", 64)
        self.embed_dim = kwargs.get("embed_dim", 256)
        self.init_gene_embed_dim = kwargs.get("init_gene_embed_dim", 200)
        self.use_gene_embedding = kwargs.get("use_gene_embedding", True)
        self.project_gene_embedding = kwargs.get("project_gene_embedding", True)
        self.num_attention_heads = kwargs.get("num_attention_heads", 8)
        self.key_size = kwargs.get("key_size", None)
        self.ffn_embed_dim = kwargs.get("ffn_embed_dim", 512)
        self.num_layers = kwargs.get("num_layers", 4)

        # return
        self.embeddings_layers_to_save: tuple[int, ...] = kwargs.get(
            "embeddings_layers_to_save", ()
        )
        self.attention_maps_to_save: list[tuple[int, int]] = kwargs.get(
            "attention_maps_to_save", []
        )

        self.__post_init__()

    def __post_init__(self):
        # Validate attention key size
        key_size = self.key_size
        if key_size is None:
            embed_dim = self.embed_dim
            num_attention_heads = self.num_attention_heads
            if not embed_dim % num_attention_heads == 0:
                raise ValueError(
                    f"When no key size is provided, the embedding dimension should be "
                    f"divisible by the number of heads, however provided embedding "
                    f"dimension is {embed_dim} and the number of heads is "
                    f"{num_attention_heads}."
                )
            self.key_size = embed_dim // num_attention_heads

        # Validate gene embedding projection
        use_gene_embedding = self.use_gene_embedding
        if use_gene_embedding:
            init_gene_embed_dim = self.init_gene_embed_dim
            embed_dim = self.embed_dim
            if init_gene_embed_dim != embed_dim:
                project_gene_embedding = self.project_gene_embedding
                if not project_gene_embedding:
                    logging.warning(
                        f"Init gene embedding dimension ({init_gene_embed_dim})"
                        f"different than embedding dimension ({embed_dim})."
                        f"Setting `project_gene_embedding` to True"
                    )
                    self.project_gene_embedding = True


class BulkRNABert(PreTrainedModel):
    config_class = BulkRNABertConfig

    def __init__(self, config: BulkRNABertConfig):
        super().__init__(config=config)

        self.expression_embedding_layer = nn.Embedding(
            config.n_expressions_bins, config.embed_dim
        )
        self.gene_embedding_layer = nn.Embedding(
            config.n_genes,
            config.init_gene_embed_dim,
        )
        self.fc_gene_embedding = nn.Linear(config.init_gene_embed_dim, config.embed_dim)

        attention_maps_to_save = config.attention_maps_to_save
        self._attention_layers_to_save = list({t[0] for t in attention_maps_to_save})

        self._attention_maps_per_layer_to_save = {
            layer: [t[1] for t in attention_maps_to_save if t[0] == layer]
            for layer in self._attention_layers_to_save
        }
        max_layer = max(self._attention_layers_to_save + [0])
        if max_layer > config.num_layers:
            raise ValueError(
                f"You are requiring attention maps for layer {max_layer}, "
                f"while the model has {config.num_layers} layers only."
            )
        self.transformer_layers = nn.ModuleList(
            [
                SelfAttentionBlock(
                    num_heads=config.num_attention_heads,
                    embed_dim=config.embed_dim,
                    key_size=config.key_size,
                    ffn_embed_dim=config.ffn_embed_dim,
                    name=f"attention_layer_{layer_idx}",
                )
                for layer_idx in range(config.num_layers)
            ]
        )

        self.lm_head = nn.Linear(config.embed_dim, config.n_expressions_bins)

    def forward(
        self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None
    ) -> dict[str, torch.Tensor]:
        outs = {}
        x = self.expression_embedding_layer(input_ids)

        if self.config.use_gene_embedding:
            gene_indices = torch.arange(self.config.n_genes, device=x.device)
            gene_embedding = self.gene_embedding_layer(gene_indices)
            if self.config.project_gene_embedding:
                gene_embedding = self.fc_gene_embedding(gene_embedding)
            x = x + gene_embedding

        if attention_mask is None:
            batch_size, seq_length = input_ids.shape
            attention_mask = torch.ones(  # noqa
                (batch_size, 1, seq_length, seq_length),
                device=input_ids.device,
                dtype=bool,
            )

        for layer_idx, transformer in enumerate(self.transformer_layers):
            output = transformer(x, attention_mask=attention_mask)
            x = output["embeddings"]
            if (layer_idx + 1) in self.config.embeddings_layers_to_save:
                outs[f"embeddings_{(layer_idx + 1)}"] = output["embeddings"]
            if (layer_idx + 1) in self._attention_layers_to_save:
                for map_number in self._attention_maps_per_layer_to_save[layer_idx + 1]:
                    dkey = f"attention_map_layer_{layer_idx + 1}_number_{map_number}"
                    outs[dkey] = output["attention_weights"][:, map_number + 1]

        outs["logits"] = self.lm_head(x)
        return outs