Delete tokenizer.py
Browse files- tokenizer.py +0 -154
tokenizer.py
DELETED
@@ -1,154 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
from typing import List, Optional, Union
|
4 |
-
|
5 |
-
import numpy as np
|
6 |
-
import torch
|
7 |
-
from transformers import PretrainedConfig, PreTrainedTokenizer
|
8 |
-
|
9 |
-
|
10 |
-
class BinnedOmicTokenizerConfig(PretrainedConfig):
|
11 |
-
def __init__(self, **kwargs):
|
12 |
-
super().__init__(**kwargs)
|
13 |
-
self.n_expressions_bins = kwargs.get("n_expressions_bins", 64)
|
14 |
-
self.min_omic_value = kwargs.get("min_omic_value", 0.0)
|
15 |
-
self.max_omic_value = kwargs.get("max_omic_value", 1.0)
|
16 |
-
self.use_max_normalization = kwargs.get("use_max_normalization", True)
|
17 |
-
self.normalization_factor = kwargs.get(
|
18 |
-
"normalization_factor", 5.547176906585117
|
19 |
-
)
|
20 |
-
self.prepend_cls_token = kwargs.get("prepend_cls_token", False)
|
21 |
-
self.fixed_sequence_length = kwargs.get("fixed_sequence_length", None)
|
22 |
-
self.unpadded_length = kwargs.get("unpadded_length", None)
|
23 |
-
|
24 |
-
|
25 |
-
class BinnedOmicTokenizer(PreTrainedTokenizer):
|
26 |
-
def __init__(
|
27 |
-
self,
|
28 |
-
n_expressions_bins: int = 64,
|
29 |
-
min_omic_value: float = 0.0,
|
30 |
-
max_omic_value: float = 1.0,
|
31 |
-
use_max_normalization: bool = True,
|
32 |
-
normalization_factor: float = 1.0,
|
33 |
-
prepend_cls_token: bool = False,
|
34 |
-
fixed_sequence_length: Optional[int] = None,
|
35 |
-
unpadded_length: Optional[int] = None,
|
36 |
-
**kwargs,
|
37 |
-
):
|
38 |
-
bin_tokens = [str(i) for i in range(n_expressions_bins)]
|
39 |
-
special_tokens = ["<pad>", "<mask>", "<cls>"]
|
40 |
-
|
41 |
-
vocab = {tok: i for i, tok in enumerate(bin_tokens)}
|
42 |
-
offset = len(vocab)
|
43 |
-
for i, tok in enumerate(special_tokens):
|
44 |
-
vocab[tok] = offset + i
|
45 |
-
|
46 |
-
ids_to_tokens = {i: tok for tok, i in vocab.items()}
|
47 |
-
|
48 |
-
self.vocab = vocab
|
49 |
-
self.ids_to_tokens = ids_to_tokens
|
50 |
-
|
51 |
-
self.n_expressions_bins = n_expressions_bins
|
52 |
-
self.min_omic_value = min_omic_value
|
53 |
-
self.max_omic_value = max_omic_value
|
54 |
-
self.use_max_normalization = use_max_normalization
|
55 |
-
self.normalization_factor = normalization_factor
|
56 |
-
self.prepend_cls_token = prepend_cls_token
|
57 |
-
self.fixed_sequence_length = fixed_sequence_length
|
58 |
-
self.unpadded_length = unpadded_length
|
59 |
-
|
60 |
-
self.bin_edges = np.linspace(min_omic_value, max_omic_value, n_expressions_bins)
|
61 |
-
|
62 |
-
self.pad_token = "<pad>"
|
63 |
-
self.mask_token = "<mask>"
|
64 |
-
self.cls_token = "<cls>"
|
65 |
-
|
66 |
-
super().__init__(**kwargs)
|
67 |
-
|
68 |
-
def _convert_token_to_id(self, token: str) -> int:
|
69 |
-
return self.vocab.get(token, self.vocab[self.unk_token])
|
70 |
-
|
71 |
-
def _convert_id_to_token(self, index: int) -> str:
|
72 |
-
return self.ids_to_tokens.get(index, self.unk_token)
|
73 |
-
|
74 |
-
def get_vocab(self) -> dict:
|
75 |
-
return self.vocab
|
76 |
-
|
77 |
-
def _tokenize(self, text, **kwargs):
|
78 |
-
raise NotImplementedError("Use `encode` or `batch_encode_plus` methods.")
|
79 |
-
|
80 |
-
def encode(
|
81 |
-
self,
|
82 |
-
gene_expr: Union[np.ndarray, List[float]],
|
83 |
-
pad_to_fixed_length: bool = False,
|
84 |
-
max_length: Optional[int] = None,
|
85 |
-
return_tensors: Optional[str] = None,
|
86 |
-
**kwargs,
|
87 |
-
) -> Union[List[int], torch.Tensor]:
|
88 |
-
gene_expr = np.array(gene_expr)
|
89 |
-
|
90 |
-
if self.use_max_normalization:
|
91 |
-
gene_expr = gene_expr / self.normalization_factor
|
92 |
-
|
93 |
-
token_ids = np.digitize(gene_expr, self.bin_edges).astype(int)
|
94 |
-
token_ids[gene_expr == 0.0] = 0
|
95 |
-
|
96 |
-
if self.prepend_cls_token:
|
97 |
-
token_ids = np.concatenate([[self.cls_token_id], token_ids])
|
98 |
-
|
99 |
-
if pad_to_fixed_length:
|
100 |
-
current_max_length = self.fixed_sequence_length or max_length
|
101 |
-
if current_max_length is None:
|
102 |
-
raise ValueError("fixed_sequence_length or max_length must be set.")
|
103 |
-
pad_len = current_max_length - len(token_ids)
|
104 |
-
if pad_len > 0:
|
105 |
-
token_ids = np.concatenate([token_ids, [self.pad_token_id] * pad_len])
|
106 |
-
else:
|
107 |
-
token_ids = token_ids[:current_max_length]
|
108 |
-
|
109 |
-
if return_tensors == "pt":
|
110 |
-
return torch.tensor(token_ids).unsqueeze(0)
|
111 |
-
return token_ids.tolist() # type: ignore
|
112 |
-
|
113 |
-
def batch_encode_plus(
|
114 |
-
self,
|
115 |
-
batch_gene_expr: Union[np.ndarray, List[np.ndarray]],
|
116 |
-
pad_to_fixed_length: bool = False,
|
117 |
-
max_length: Optional[int] = None,
|
118 |
-
return_tensors: Optional[str] = None,
|
119 |
-
**kwargs,
|
120 |
-
):
|
121 |
-
if isinstance(batch_gene_expr, list):
|
122 |
-
batch_gene_expr = np.array(batch_gene_expr)
|
123 |
-
|
124 |
-
encoded = [
|
125 |
-
self.encode(
|
126 |
-
gene_expr,
|
127 |
-
pad_to_fixed_length=pad_to_fixed_length,
|
128 |
-
max_length=max_length,
|
129 |
-
return_tensors=None,
|
130 |
-
**kwargs,
|
131 |
-
)
|
132 |
-
for gene_expr in batch_gene_expr
|
133 |
-
]
|
134 |
-
|
135 |
-
encoded = np.array(encoded, dtype=np.int64)
|
136 |
-
|
137 |
-
if return_tensors == "pt":
|
138 |
-
return {"input_ids": torch.tensor(encoded)}
|
139 |
-
return {"input_ids": encoded}
|
140 |
-
|
141 |
-
@property
|
142 |
-
def vocab_size(self) -> int:
|
143 |
-
return len(self.vocab)
|
144 |
-
|
145 |
-
def save_vocabulary(
|
146 |
-
self, save_directory: str, filename_prefix: Optional[str] = None
|
147 |
-
):
|
148 |
-
vocab_file = os.path.join(
|
149 |
-
save_directory,
|
150 |
-
(filename_prefix + "-" if filename_prefix else "") + "vocab.json",
|
151 |
-
)
|
152 |
-
with open(vocab_file, "w") as f:
|
153 |
-
json.dump(self.vocab, f)
|
154 |
-
return (vocab_file,)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|