mgelard commited on
Commit
b084141
·
verified ·
1 Parent(s): 2133a10

Delete tokenizer.py

Browse files
Files changed (1) hide show
  1. tokenizer.py +0 -154
tokenizer.py DELETED
@@ -1,154 +0,0 @@
1
- import json
2
- import os
3
- from typing import List, Optional, Union
4
-
5
- import numpy as np
6
- import torch
7
- from transformers import PretrainedConfig, PreTrainedTokenizer
8
-
9
-
10
- class BinnedOmicTokenizerConfig(PretrainedConfig):
11
- def __init__(self, **kwargs):
12
- super().__init__(**kwargs)
13
- self.n_expressions_bins = kwargs.get("n_expressions_bins", 64)
14
- self.min_omic_value = kwargs.get("min_omic_value", 0.0)
15
- self.max_omic_value = kwargs.get("max_omic_value", 1.0)
16
- self.use_max_normalization = kwargs.get("use_max_normalization", True)
17
- self.normalization_factor = kwargs.get(
18
- "normalization_factor", 5.547176906585117
19
- )
20
- self.prepend_cls_token = kwargs.get("prepend_cls_token", False)
21
- self.fixed_sequence_length = kwargs.get("fixed_sequence_length", None)
22
- self.unpadded_length = kwargs.get("unpadded_length", None)
23
-
24
-
25
- class BinnedOmicTokenizer(PreTrainedTokenizer):
26
- def __init__(
27
- self,
28
- n_expressions_bins: int = 64,
29
- min_omic_value: float = 0.0,
30
- max_omic_value: float = 1.0,
31
- use_max_normalization: bool = True,
32
- normalization_factor: float = 1.0,
33
- prepend_cls_token: bool = False,
34
- fixed_sequence_length: Optional[int] = None,
35
- unpadded_length: Optional[int] = None,
36
- **kwargs,
37
- ):
38
- bin_tokens = [str(i) for i in range(n_expressions_bins)]
39
- special_tokens = ["<pad>", "<mask>", "<cls>"]
40
-
41
- vocab = {tok: i for i, tok in enumerate(bin_tokens)}
42
- offset = len(vocab)
43
- for i, tok in enumerate(special_tokens):
44
- vocab[tok] = offset + i
45
-
46
- ids_to_tokens = {i: tok for tok, i in vocab.items()}
47
-
48
- self.vocab = vocab
49
- self.ids_to_tokens = ids_to_tokens
50
-
51
- self.n_expressions_bins = n_expressions_bins
52
- self.min_omic_value = min_omic_value
53
- self.max_omic_value = max_omic_value
54
- self.use_max_normalization = use_max_normalization
55
- self.normalization_factor = normalization_factor
56
- self.prepend_cls_token = prepend_cls_token
57
- self.fixed_sequence_length = fixed_sequence_length
58
- self.unpadded_length = unpadded_length
59
-
60
- self.bin_edges = np.linspace(min_omic_value, max_omic_value, n_expressions_bins)
61
-
62
- self.pad_token = "<pad>"
63
- self.mask_token = "<mask>"
64
- self.cls_token = "<cls>"
65
-
66
- super().__init__(**kwargs)
67
-
68
- def _convert_token_to_id(self, token: str) -> int:
69
- return self.vocab.get(token, self.vocab[self.unk_token])
70
-
71
- def _convert_id_to_token(self, index: int) -> str:
72
- return self.ids_to_tokens.get(index, self.unk_token)
73
-
74
- def get_vocab(self) -> dict:
75
- return self.vocab
76
-
77
- def _tokenize(self, text, **kwargs):
78
- raise NotImplementedError("Use `encode` or `batch_encode_plus` methods.")
79
-
80
- def encode(
81
- self,
82
- gene_expr: Union[np.ndarray, List[float]],
83
- pad_to_fixed_length: bool = False,
84
- max_length: Optional[int] = None,
85
- return_tensors: Optional[str] = None,
86
- **kwargs,
87
- ) -> Union[List[int], torch.Tensor]:
88
- gene_expr = np.array(gene_expr)
89
-
90
- if self.use_max_normalization:
91
- gene_expr = gene_expr / self.normalization_factor
92
-
93
- token_ids = np.digitize(gene_expr, self.bin_edges).astype(int)
94
- token_ids[gene_expr == 0.0] = 0
95
-
96
- if self.prepend_cls_token:
97
- token_ids = np.concatenate([[self.cls_token_id], token_ids])
98
-
99
- if pad_to_fixed_length:
100
- current_max_length = self.fixed_sequence_length or max_length
101
- if current_max_length is None:
102
- raise ValueError("fixed_sequence_length or max_length must be set.")
103
- pad_len = current_max_length - len(token_ids)
104
- if pad_len > 0:
105
- token_ids = np.concatenate([token_ids, [self.pad_token_id] * pad_len])
106
- else:
107
- token_ids = token_ids[:current_max_length]
108
-
109
- if return_tensors == "pt":
110
- return torch.tensor(token_ids).unsqueeze(0)
111
- return token_ids.tolist() # type: ignore
112
-
113
- def batch_encode_plus(
114
- self,
115
- batch_gene_expr: Union[np.ndarray, List[np.ndarray]],
116
- pad_to_fixed_length: bool = False,
117
- max_length: Optional[int] = None,
118
- return_tensors: Optional[str] = None,
119
- **kwargs,
120
- ):
121
- if isinstance(batch_gene_expr, list):
122
- batch_gene_expr = np.array(batch_gene_expr)
123
-
124
- encoded = [
125
- self.encode(
126
- gene_expr,
127
- pad_to_fixed_length=pad_to_fixed_length,
128
- max_length=max_length,
129
- return_tensors=None,
130
- **kwargs,
131
- )
132
- for gene_expr in batch_gene_expr
133
- ]
134
-
135
- encoded = np.array(encoded, dtype=np.int64)
136
-
137
- if return_tensors == "pt":
138
- return {"input_ids": torch.tensor(encoded)}
139
- return {"input_ids": encoded}
140
-
141
- @property
142
- def vocab_size(self) -> int:
143
- return len(self.vocab)
144
-
145
- def save_vocabulary(
146
- self, save_directory: str, filename_prefix: Optional[str] = None
147
- ):
148
- vocab_file = os.path.join(
149
- save_directory,
150
- (filename_prefix + "-" if filename_prefix else "") + "vocab.json",
151
- )
152
- with open(vocab_file, "w") as f:
153
- json.dump(self.vocab, f)
154
- return (vocab_file,)