Upload tokenizer
Browse files- special_tokens_map.json +1 -0
- tokenizer.py +154 -0
- tokenizer_config.json +12 -0
- vocab.json +1 -0
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
tokenizer.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from typing import List, Optional, Union
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from transformers import PretrainedConfig, PreTrainedTokenizer
|
8 |
+
|
9 |
+
|
10 |
+
class BinnedOmicTokenizerConfig(PretrainedConfig):
|
11 |
+
def __init__(self, **kwargs):
|
12 |
+
super().__init__(**kwargs)
|
13 |
+
self.n_expressions_bins = kwargs.get("n_expressions_bins", 64)
|
14 |
+
self.min_omic_value = kwargs.get("min_omic_value", 0.0)
|
15 |
+
self.max_omic_value = kwargs.get("max_omic_value", 1.0)
|
16 |
+
self.use_max_normalization = kwargs.get("use_max_normalization", True)
|
17 |
+
self.normalization_factor = kwargs.get(
|
18 |
+
"normalization_factor", 5.547176906585117
|
19 |
+
)
|
20 |
+
self.prepend_cls_token = kwargs.get("prepend_cls_token", False)
|
21 |
+
self.fixed_sequence_length = kwargs.get("fixed_sequence_length", None)
|
22 |
+
self.unpadded_length = kwargs.get("unpadded_length", None)
|
23 |
+
|
24 |
+
|
25 |
+
class BinnedOmicTokenizer(PreTrainedTokenizer):
|
26 |
+
def __init__(
|
27 |
+
self,
|
28 |
+
n_expressions_bins: int = 64,
|
29 |
+
min_omic_value: float = 0.0,
|
30 |
+
max_omic_value: float = 1.0,
|
31 |
+
use_max_normalization: bool = True,
|
32 |
+
normalization_factor: float = 1.0,
|
33 |
+
prepend_cls_token: bool = False,
|
34 |
+
fixed_sequence_length: Optional[int] = None,
|
35 |
+
unpadded_length: Optional[int] = None,
|
36 |
+
**kwargs,
|
37 |
+
):
|
38 |
+
bin_tokens = [str(i) for i in range(n_expressions_bins)]
|
39 |
+
special_tokens = ["<pad>", "<mask>", "<cls>"]
|
40 |
+
|
41 |
+
vocab = {tok: i for i, tok in enumerate(bin_tokens)}
|
42 |
+
offset = len(vocab)
|
43 |
+
for i, tok in enumerate(special_tokens):
|
44 |
+
vocab[tok] = offset + i
|
45 |
+
|
46 |
+
ids_to_tokens = {i: tok for tok, i in vocab.items()}
|
47 |
+
|
48 |
+
self.vocab = vocab
|
49 |
+
self.ids_to_tokens = ids_to_tokens
|
50 |
+
|
51 |
+
self.n_expressions_bins = n_expressions_bins
|
52 |
+
self.min_omic_value = min_omic_value
|
53 |
+
self.max_omic_value = max_omic_value
|
54 |
+
self.use_max_normalization = use_max_normalization
|
55 |
+
self.normalization_factor = normalization_factor
|
56 |
+
self.prepend_cls_token = prepend_cls_token
|
57 |
+
self.fixed_sequence_length = fixed_sequence_length
|
58 |
+
self.unpadded_length = unpadded_length
|
59 |
+
|
60 |
+
self.bin_edges = np.linspace(min_omic_value, max_omic_value, n_expressions_bins)
|
61 |
+
|
62 |
+
self.pad_token = "<pad>"
|
63 |
+
self.mask_token = "<mask>"
|
64 |
+
self.cls_token = "<cls>"
|
65 |
+
|
66 |
+
super().__init__(**kwargs)
|
67 |
+
|
68 |
+
def _convert_token_to_id(self, token: str) -> int:
|
69 |
+
return self.vocab.get(token, self.vocab[self.unk_token])
|
70 |
+
|
71 |
+
def _convert_id_to_token(self, index: int) -> str:
|
72 |
+
return self.ids_to_tokens.get(index, self.unk_token)
|
73 |
+
|
74 |
+
def get_vocab(self) -> dict:
|
75 |
+
return self.vocab
|
76 |
+
|
77 |
+
def _tokenize(self, text, **kwargs):
|
78 |
+
raise NotImplementedError("Use `encode` or `batch_encode_plus` methods.")
|
79 |
+
|
80 |
+
def encode(
|
81 |
+
self,
|
82 |
+
gene_expr: Union[np.ndarray, List[float]],
|
83 |
+
pad_to_fixed_length: bool = False,
|
84 |
+
max_length: Optional[int] = None,
|
85 |
+
return_tensors: Optional[str] = None,
|
86 |
+
**kwargs,
|
87 |
+
) -> Union[List[int], torch.Tensor]:
|
88 |
+
gene_expr = np.array(gene_expr)
|
89 |
+
|
90 |
+
if self.use_max_normalization:
|
91 |
+
gene_expr = gene_expr / self.normalization_factor
|
92 |
+
|
93 |
+
token_ids = np.digitize(gene_expr, self.bin_edges).astype(int)
|
94 |
+
token_ids[gene_expr == 0.0] = 0
|
95 |
+
|
96 |
+
if self.prepend_cls_token:
|
97 |
+
token_ids = np.concatenate([[self.cls_token_id], token_ids])
|
98 |
+
|
99 |
+
if pad_to_fixed_length:
|
100 |
+
current_max_length = self.fixed_sequence_length or max_length
|
101 |
+
if current_max_length is None:
|
102 |
+
raise ValueError("fixed_sequence_length or max_length must be set.")
|
103 |
+
pad_len = current_max_length - len(token_ids)
|
104 |
+
if pad_len > 0:
|
105 |
+
token_ids = np.concatenate([token_ids, [self.pad_token_id] * pad_len])
|
106 |
+
else:
|
107 |
+
token_ids = token_ids[:current_max_length]
|
108 |
+
|
109 |
+
if return_tensors == "pt":
|
110 |
+
return torch.tensor(token_ids).unsqueeze(0)
|
111 |
+
return token_ids.tolist() # type: ignore
|
112 |
+
|
113 |
+
def batch_encode_plus(
|
114 |
+
self,
|
115 |
+
batch_gene_expr: Union[np.ndarray, List[np.ndarray]],
|
116 |
+
pad_to_fixed_length: bool = False,
|
117 |
+
max_length: Optional[int] = None,
|
118 |
+
return_tensors: Optional[str] = None,
|
119 |
+
**kwargs,
|
120 |
+
):
|
121 |
+
if isinstance(batch_gene_expr, list):
|
122 |
+
batch_gene_expr = np.array(batch_gene_expr)
|
123 |
+
|
124 |
+
encoded = [
|
125 |
+
self.encode(
|
126 |
+
gene_expr,
|
127 |
+
pad_to_fixed_length=pad_to_fixed_length,
|
128 |
+
max_length=max_length,
|
129 |
+
return_tensors=None,
|
130 |
+
**kwargs,
|
131 |
+
)
|
132 |
+
for gene_expr in batch_gene_expr
|
133 |
+
]
|
134 |
+
|
135 |
+
encoded = np.array(encoded, dtype=np.int64)
|
136 |
+
|
137 |
+
if return_tensors == "pt":
|
138 |
+
return {"input_ids": torch.tensor(encoded)}
|
139 |
+
return {"input_ids": encoded}
|
140 |
+
|
141 |
+
@property
|
142 |
+
def vocab_size(self) -> int:
|
143 |
+
return len(self.vocab)
|
144 |
+
|
145 |
+
def save_vocabulary(
|
146 |
+
self, save_directory: str, filename_prefix: Optional[str] = None
|
147 |
+
):
|
148 |
+
vocab_file = os.path.join(
|
149 |
+
save_directory,
|
150 |
+
(filename_prefix + "-" if filename_prefix else "") + "vocab.json",
|
151 |
+
)
|
152 |
+
with open(vocab_file, "w") as f:
|
153 |
+
json.dump(self.vocab, f)
|
154 |
+
return (vocab_file,)
|
tokenizer_config.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {},
|
3 |
+
"auto_map": {
|
4 |
+
"AutoTokenizer": [
|
5 |
+
"tokenizer.BinnedOmicTokenizer",
|
6 |
+
null
|
7 |
+
]
|
8 |
+
},
|
9 |
+
"clean_up_tokenization_spaces": true,
|
10 |
+
"model_max_length": 1000000000000000019884624838656,
|
11 |
+
"tokenizer_class": "BinnedOmicTokenizer"
|
12 |
+
}
|
vocab.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"0": 0, "1": 1, "2": 2, "3": 3, "4": 4, "5": 5, "6": 6, "7": 7, "8": 8, "9": 9, "10": 10, "11": 11, "12": 12, "13": 13, "14": 14, "15": 15, "16": 16, "17": 17, "18": 18, "19": 19, "20": 20, "21": 21, "22": 22, "23": 23, "24": 24, "25": 25, "26": 26, "27": 27, "28": 28, "29": 29, "30": 30, "31": 31, "32": 32, "33": 33, "34": 34, "35": 35, "36": 36, "37": 37, "38": 38, "39": 39, "40": 40, "41": 41, "42": 42, "43": 43, "44": 44, "45": 45, "46": 46, "47": 47, "48": 48, "49": 49, "50": 50, "51": 51, "52": 52, "53": 53, "54": 54, "55": 55, "56": 56, "57": 57, "58": 58, "59": 59, "60": 60, "61": 61, "62": 62, "63": 63, "<pad>": 64, "<mask>": 65, "<cls>": 66}
|