File size: 69,522 Bytes
03e9d8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
# This file stores ChatNT and all associated layers and configs

from dataclasses import asdict, dataclass, field
from typing import Dict, List, Optional, Tuple

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F  # noqa: N812
from transformers import PretrainedConfig, PreTrainedModel


@dataclass
class RotaryEmbeddingConfig:
    """
    Rotary Positional Embedding configuration
        max_seq_len: The number of positions to encode and cache.
        dim: Dimension of RoPE.
        theta: Rotation angle.
    """

    max_seq_len: int
    dim: int
    theta: float


@dataclass
class PerceiverResamplerConfig:
    """
    Parameters to initialize an PerceiverResampler model.

    Args:
        emb_layer_norm_before: Whether to use layer norm before the first attention
            layer.
        attention_heads: Number of attention heads.
        key_size: The dimension of the query, key, and values within each attention
            head, if not specified, it is set to attention_heads//embed_dim.
            It can be useful to set a custom key size if we want to impose the size of
            the query, key and value tensor ( for example, tensors shaped with
            power of 2 are more efficiently handled on TPUs ).
            Note: Parametrizing the model with a custom key size has been done in :
            Brown, Tom, et al. "Language models are few-shot learners."
            Advances in neural information processing systems 33 (2020): 1877-1901.
        embed_dim: Embedding dimension.
        ffn_embed_dim: Feed forward embedding dimension.
        num_layers: Number of attention blocks.
        ffn_activation_name: Activation function to be used in FFN block. Supported
            names are "gelu", "relu", "swish".
        use_glu_in_ffn: Whether to use Gated Linear Unit (GLU) in Feed
            Forward Network (FFN) block. To do a swiGLU (gated-swish) put this arg
            to True and use swish as ffn_activation_name.
            Same principle for a gated-relu. To keep the same number of parameters in
            the FFN block, one should multiply by 2/3 the ffn_embed_dim when using GLU.
            See https://arxiv.org/pdf/2002.05202.pdf for more details.
        resampled_length: length of the resampled output of the module
        use_gradient_checkpointing: Whether to use gradient checkpointing (checkpoint
            gradients in the forward pass to reduce the computation in the backward).
    """

    # architecture
    emb_layer_norm_before: bool = False
    attention_heads: int = 20
    key_size: Optional[int] = None
    embed_dim: int = 1280
    ffn_embed_dim: int = 5120
    num_layers: int = 24
    add_bias_kv: bool = False
    add_bias_ffn: bool = True
    ffn_activation_name: str = "gelu-no-approx"
    use_glu_in_ffn: bool = False
    resampled_length: int = 64

    # performance
    use_gradient_checkpointing: bool = False

    def __post_init__(self) -> None:
        """
        Checks that the given values are compatible.
        """

        if self.key_size is None:
            if not self.embed_dim % self.attention_heads == 0:
                raise ValueError(
                    f"When no key size is provided, the embedding dimension should be "
                    f"divisible by the number of heads, however provided embedding "
                    f"dimension is {self.embed_dim} and the number of heads is "
                    f"{self.attention_heads}."
                )
            self.key_size = self.embed_dim // self.attention_heads


@dataclass
class GptConfig:
    """
    Parameters to initialize a Gpt model.

    NOTE: the pad token is not defined

    Args:
        vocab_size: Token vocabulary.
        eos_token_id: used to stop sentence generation
        embed_dim: Embedding dimension.
        ffn_embed_dim: Feed forward embedding dimension.
        num_heads: Number of attention heads.
        num_kv_heads: Number of key and value heads to support Grouped-Query and
            Multi-Query Attention. If None, the number of key and value heads is
            equal to the number of attention heads.
        num_layers: Number of Decoder layer_stack
        rope_config: The configuration for the rotary positional embeddings
        add_bias_ffn: Add bias in feed forward network block.
        ffn_activation_name: Activation function to be used in FFN block. Supported
            names are "gelu", "gelu-no-approx", "relu", "swish".
        use_glu_in_ffn: whether to use Gated Linear Unit (GLU) in Feed
            Forward Network (FFN) block.
            example: To do a swiGLU (gated-swish) put this arg
            to True and use swish as ffn_activation_name.
            Same principle for a gated-relu.
        add_bias_lm_head: whether to use bias in the final LM layer
        norm_type: The type of norm used ( pre normalization scheme ) used. can be
            one of ["layer_norm", "RMS_norm"]
        parallel_attention_ff: Whether to do the attention and the MLP in parallel,
            and then sum up the results as it is done in Gpt-NeoX :
            Black, Sid, et al. "Gpt-neox-20b: An open-source autoregressive
            language model." arXiv preprint arXiv:2204.06745 (2022).
            It is said to improve the training time of 15% when compiling with JAX
        use_gradient_checkpointing: Whether to use gradient checkpointing (checkpoint
            gradients in the forward pass to reduce the computation in the backward).
        add_bias_attn: Add bias to the attention mechanism (key, query, value, and
            output projections).
    """

    # vocabulary
    vocab_size: int
    eos_token_id: int

    # architecture
    embed_dim: int = 16
    ffn_embed_dim: int = 64
    num_heads: int = 2
    num_kv_heads: Optional[int] = None
    num_layers: int = 2
    rope_config: RotaryEmbeddingConfig = field(
        default_factory=lambda: RotaryEmbeddingConfig(
            max_seq_len=512, dim=8, theta=10000.0
        )
    )
    add_bias_ffn: bool = False
    ffn_activation_name: str = "swish"
    use_glu_in_ffn: bool = True
    add_bias_lm_head: bool = False
    norm_type: str = "RMS_norm"
    rms_norm_eps: float = 1e-6
    parallel_attention_ff: bool = True

    # inference / backward behavior
    use_gradient_checkpointing: bool = False

    # architecture params with default values
    add_bias_attn: bool = False

    def __post_init__(self) -> None:
        """
        Checks that the given values are compatible.
        """
        if not self.embed_dim % self.num_heads == 0:
            raise ValueError(
                f"The embedding dimension should be "
                f"divisible by the number of heads, however provided embedding "
                f"dimension is {self.embed_dim} and the number of heads is "
                f"{self.num_heads}."
            )

        if not self.embed_dim // self.num_heads > 1:
            raise ValueError(
                "embed_dim / num_heads must be higher than 2 to apply rotary embeddings"
            )

        if not self.embed_dim // self.num_heads >= self.rope_config.dim:
            raise ValueError(
                "embed_dim // num_heads must be higher than rope_config.dim "
                "to apply rotary embeddings"
            )

    def to_dict(self):  # type: ignore
        output = asdict(self)
        output["rope_config"] = asdict(self.rope_config)
        return output


@dataclass
class NucleotideTransformerConfig:
    """
    Parameters to initialize an NT model.

    Args:
        alphabet_size: Token vocabulary.
        pad_token_id: ID of pad token.
        mask_token_id: ID of mask token.
        max_positions: Maximum sequence length.
        embed_scale: Correction ratio applied to the embeddings to make up for the
            norm difference between the input during training and inference.
        emb_layer_norm_before: Whether to use layer norm before the first attention
            layer.
        attention_heads: Number of attention heads.
        key_size: The dimension of the query, key, and values within each attention
            head, if not specified, it is set to attention_heads//embed_dim.
            It can be useful to set a custom key size if we want to impose the size of
            the query, key and value tensor ( for example, tensors shaped with
            power of 2 are more efficiently handled on TPUs ).
            Note: Parametrizing the model with a custom key size has been done in :
            Brown, Tom, et al. "Language models are few-shot learners."
            Advances in neural information processing systems 33 (2020): 1877-1901.
        embed_dim: Embedding dimension.
        ffn_embed_dim: Feed forward embedding dimension.
        num_layers: Number of attention blocks.
        positional_embedding: Type of positional embedding to use before the first
            attention layer. Options: "learned", "learned_standard" "sinusoidal" or
            None.
            NOTE: "learned" is the positional embedding of ESM, and "learned_standard"
            is a more standard one, used for example in DNAbert.
        lm_head: type of language model head. Options: "simple", "roberta" or None.
        add_bias_kv: Add bias in attention layer.
        add_bias_ffn: Add bias in feed forward network block.
        use_rotary_embedding: Whether to use rotary embeddings. Requires:
            positional_embeddings = None.
        rescaling_factor: Scaling factor to use for rotary embeddings.
        ffn_activation_name: Activation function to be used in FFN block. Supported
            names are "gelu", "relu", "swish".
        use_glu_in_ffn: Whether to use Gated Linear Unit (GLU) in Feed
            Forward Network (FFN) block. To do a swiGLU (gated-swish) put this arg
            to True and use swish as ffn_activation_name.
            Same principle for a gated-relu. To keep the same number of parameters in
            the FFN block, one should multiply by 2/3 the ffn_embed_dim when using GLU.
            See https://arxiv.org/pdf/2002.05202.pdf for more details.
        mask_before_attention: Use mask before attention layers.
        layer_norm_eps: the eps factor in the different layer norms of the model (refer
            to layer norm implementation)
        token_dropout: Token dropout.
        masking_ratio: Masking ratio (used if token dropout is enabled).
        masking_prob: Masking probability (used if token dropout is enabled).
        use_gradient_checkpointing: Whether to use gradient checkpointing (checkpoint
            gradients in the forward pass to reduce the computation in the backward).
    """

    alphabet_size: int
    pad_token_id: int
    mask_token_id: int

    max_positions: int = 1024
    embed_scale: float = 1.0

    # architecture
    emb_layer_norm_before: bool = False
    attention_heads: int = 20
    key_size: Optional[int] = None
    embed_dim: int = 1280
    ffn_embed_dim: int = 5120
    num_layers: int = 24
    positional_embedding: Optional[str] = "learned"
    lm_head: Optional[str] = "simple"
    add_bias_kv: bool = False
    add_bias_ffn: bool = True
    use_rotary_embedding: bool = False
    rescaling_factor: Optional[float] = None
    ffn_activation_name: str = "gelu-no-approx"
    use_glu_in_ffn: bool = False
    mask_before_attention: bool = False
    layer_norm_eps: float = 1e-5
    pre_layer_norm: bool = True
    bias_word_embedding: bool = False

    # dropout
    token_dropout: bool = False
    masking_ratio: float = 0.1
    masking_prob: float = 0.8

    # logging
    use_gradient_checkpointing: bool = False

    # return
    embeddings_layers_to_save: List[int] = field(default_factory=list)
    attention_maps_to_save: List[Tuple[int, int]] = field(default_factory=list)

    def __post_init__(self) -> None:
        """
        Checks that the given values are compatible.
        """

        if self.key_size is None:
            if not self.embed_dim % self.attention_heads == 0:
                raise ValueError(
                    f"When no key size is provided, the embedding dimension should be "
                    f"divisible by the number of heads, however provided embedding "
                    f"dimension is {self.embed_dim} and the number of heads is "
                    f"{self.attention_heads}."
                )
            self.key_size = self.embed_dim // self.attention_heads
        if self.positional_embedding is not None:
            if type(self.positional_embedding) != str:
                raise TypeError

            if self.positional_embedding not in [
                "learned",
                "sinusoidal",
                "learned_standard",
                "alibi_dnabert_2",
            ]:
                raise ValueError(
                    "The positional_embedding argument should either be None,"
                    "`learned`, `sinusoidal`, 'learned_standard' or 'alibi_dnabert_2'."
                )
        if self.lm_head is not None:
            if type(self.lm_head) != str:
                raise TypeError

            if self.lm_head not in ["simple", "roberta"]:
                raise ValueError(
                    "The lm_head argument should either be None,"
                    "`simple` or `roberta`."
                )

        if self.use_rotary_embedding and self.positional_embedding is not None:
            raise ValueError(
                "When using rotary embedding, positional_embedding must be set to none"
            )

        if self.add_bias_kv and self.use_rotary_embedding:
            raise ValueError(
                "Biases on key and values are not compatible with Rotary embeddings."
            )

        if self.positional_embedding == "alibi_dnabert_2":
            assert not self.add_bias_kv


@dataclass
class ChatNTConfig(PretrainedConfig):
    model_type = "ChatNT"

    def __init__(self, **kwargs):  # type: ignore
        self.gpt_config: GptConfig = kwargs.get("gpt_config", GptConfig(32000, 3))
        self.nt_config: NucleotideTransformerConfig = kwargs.get(
            "nt_config", NucleotideTransformerConfig(4000, 1, 4)
        )
        self.perceiver_resampler_config: PerceiverResamplerConfig = kwargs.get(
            "perceiver_resampler_config", PerceiverResamplerConfig()
        )
        self.seq_token_id: int = kwargs.get("seq_token_id", 32000)
        self.bio_pad_token_id: int = kwargs.get("bio_pad_token_id", 1)
        self.english_pad_token_id: int = kwargs.get("english_pad_token_id", 2)
        super().__init__(**kwargs)

    def to_dict(self):  # type: ignore
        output = super().to_dict()

        def serialize(obj):  # type: ignore
            return obj.to_dict() if hasattr(obj, "to_dict") else vars(obj)

        output["gpt_config"] = serialize(self.gpt_config)  # type: ignore
        output["nt_config"] = serialize(self.nt_config)  # type: ignore
        output["perceiver_resampler_config"] = serialize(  # type: ignore
            self.perceiver_resampler_config
        )
        return output


class TorchBioBrainDecoder(nn.Module):
    def __init__(
        self,
        gpt_config: GptConfig,
        seq_token_id: int,
    ):
        """
        Initializes the BioBrain decoder, using a GPT model for text generation with
        bio embeddings.

        Args:
            gpt_config: Configuration for the GPT model
            seq_token_id: Index of the SEQ token
        """
        super(TorchBioBrainDecoder, self).__init__()
        self.gpt_config = gpt_config
        self.seq_token_id = seq_token_id

        # Initialize the GPT model (assumed you have it already in PyTorch)
        self.gpt_model = TorchGptDecoder(self.gpt_config)

    def forward(
        self, english_token_ids: torch.Tensor, projected_bio_embeddings: torch.Tensor
    ) -> torch.Tensor:
        """
        Forward pass through the model.

        Args:
            english_token_ids: Tensor of English token IDs with shape
                (batch_size, num_english_tokens).
            projected_bio_embeddings: Optional tensor of bio embeddings with shape
                                      (batch_size, num_bio_sequences, ?, embed_dim).

        Returns:
            torch.Tensor: The logits from the GPT model,
                shaped (batch_size, num_english_tokens, vocab_size).
        """

        # Compute English token embeddings
        tokens_embeddings = self.gpt_model.token_embed(english_token_ids)

        if projected_bio_embeddings is not None:
            (
                batch_size,
                num_bio_sequences,
                _,
                bio_embed_dim,
            ) = projected_bio_embeddings.shape

            # Insert the bio embeddings at the SEQ token positions
            processed_tokens_ids = english_token_ids.clone()
            for bio_seq_num in range(num_bio_sequences):
                tokens_embeddings, processed_tokens_ids = self.insert_embeddings(
                    processed_tokens_ids,
                    tokens_embeddings,
                    projected_bio_embeddings[:, bio_seq_num, :, :],
                    bio_seq_num=bio_seq_num,
                )

        # Regular GPT pass through
        embeddings = self.gpt_model.apply_transformer_layers(tokens_embeddings)
        embeddings = self.gpt_model.final_norm(embeddings)

        # Compute logits
        logits = self.gpt_model.lm_head(embeddings)

        if projected_bio_embeddings is not None:
            # Clean logits sequentially
            processed_tokens_ids = english_token_ids.clone()
            resampled_length = projected_bio_embeddings.shape[-2]
            for _ in range(num_bio_sequences):
                logits, processed_tokens_ids = self.cleanup_logits(
                    tokens=processed_tokens_ids,
                    logits=logits,
                    resampled_length=resampled_length,
                )

        return logits

    def insert_embeddings(
        self,
        tokens: torch.Tensor,
        input_embeddings: torch.Tensor,
        resampled_embeddings: torch.Tensor,
        bio_seq_num: int,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Inserts resampled embeddings in input_embeddings, starting at the SEQ token

        Args:
            tokens (torch.Tensor): Shape (batch_size, num_tokens)
            input_embeddings (torch.Tensor): Shape (batch_size, num_tokens, embed_dim)
            resampled_embeddings (torch.Tensor):
                Shape (batch_size, num_bio_sequences, bio_sequence_length, embed_dim)

        Returns:
            Tuple[torch.Tensor, torch.Tensor]:
                - input_embeddings with resampled_embeddings inserted at the SEQ token
                - tokens with the SEQ token set to -1
        """

        def _insert(
            tokens_1d: torch.Tensor,
            input_embeddings_1d: torch.Tensor,
            resampled_embeddings_1d: torch.Tensor,
        ) -> Tuple[torch.Tensor, torch.Tensor]:
            """
            Args:
                tokens (torch.Tensor): Shape (num_tokens,)
                input_embeddings (torch.Tensor): Shape (num_tokens, embed_dim,)
                resampled_embeddings (torch.Tensor):
                    Shape (bio_sequence_length, embed_dim,)
            """
            indices = torch.where(tokens_1d == self.seq_token_id)[0]
            if indices.numel() > 0:
                idx = indices[0].item()
                insertion_pos = idx + resampled_embeddings_1d.shape[-2] * bio_seq_num
                x = torch.cat(
                    [
                        input_embeddings_1d[:insertion_pos, :],
                        resampled_embeddings_1d,
                        input_embeddings_1d[insertion_pos:, :],
                    ],
                    dim=0,
                )[: tokens_1d.shape[0] + 1, :]
                x = torch.roll(torch.roll(x, shifts=-idx, dims=0), shifts=idx, dims=0)[
                    :-1, :
                ]
                tokens_1d[idx] = -1
                return x, tokens_1d
            else:
                return (
                    input_embeddings,
                    tokens_1d,
                )  # Return unchanged if seq_token_id is not found

        tokens_acc = []
        embeddings_acc = []

        for i in range(tokens.shape[0]):
            embeddings_out, tokens_out = _insert(
                tokens[i].clone(),
                input_embeddings[i].clone(),
                resampled_embeddings[i].clone(),
            )
            tokens_acc.append(tokens_out)
            embeddings_acc.append(embeddings_out)
        tokens_acc = torch.stack(tokens_acc)
        embeddings_acc = torch.stack(embeddings_acc)

        return embeddings_acc, tokens_acc

    def cleanup_logits(
        self, tokens: torch.Tensor, logits: torch.Tensor, resampled_length: int
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Removes the logits corresponding to the unused embeddings.

        Args:
            tokens: Input english tokens.
            logits: Input logits.

        Returns:
            Cleaned logits, last values will be equal to 0.
        """

        def _clean(
            token: torch.Tensor, logit: torch.Tensor
        ) -> Tuple[torch.Tensor, torch.Tensor]:
            indices = torch.where(token == self.seq_token_id)[0]
            if indices.numel() > 0:
                idx = indices[0].item()

                mask_idx = (
                    torch.arange(logit.shape[0] - resampled_length, device=logit.device)
                    > idx
                )
                mask_idx = mask_idx.unsqueeze(1)

                # Remove values corresponding to bio tokens
                logit = (
                    logit[:-resampled_length] * (~mask_idx)
                    + logit[resampled_length:] * mask_idx
                )

                # Append zeros at the end
                logit = torch.cat(
                    (
                        logit,
                        torch.zeros(
                            (resampled_length, logit.shape[1]),
                            dtype=logit.dtype,
                            device=logit.device,
                        ),
                    )
                )

                # Update token
                token[idx] = -1

                return logit, token

            else:
                return logit, token

        tokens_acc = []
        logits_acc = []

        for i in range(tokens.shape[0]):
            logits_out, tokens_out = _clean(tokens[i].clone(), logits[i].clone())
            tokens_acc.append(tokens_out)
            logits_acc.append(logits_out)
        tokens_acc = torch.stack(tokens_acc)
        logits_acc = torch.stack(logits_acc)

        return logits_acc, tokens_acc


class TorchMultiOmicsModel(PreTrainedModel):
    config_class = ChatNTConfig

    def __init__(self, config: ChatNTConfig) -> None:
        if isinstance(config, dict):
            # If config is a dictionary instead of ChatNTConfig (which can happen
            # depending how the config was saved), we convert it to the config
            config["gpt_config"]["rope_config"] = RotaryEmbeddingConfig(
                **config["gpt_config"]["rope_config"]
            )
            config["gpt_config"] = GptConfig(**config["gpt_config"])
            config["nt_config"] = NucleotideTransformerConfig(**config["nt_config"])
            config["perceiver_resampler_config"] = PerceiverResamplerConfig(
                **config["perceiver_resampler_config"]
            )
            config = ChatNTConfig(**config)  # type: ignore

        else:
            if isinstance(config.gpt_config, dict):
                config.gpt_config["rope_config"] = RotaryEmbeddingConfig(
                    **config.gpt_config["rope_config"]
                )
                config.gpt_config = GptConfig(**config.gpt_config)

            if isinstance(config.nt_config, dict):
                config.nt_config = NucleotideTransformerConfig(**config.nt_config)

            if isinstance(config.perceiver_resampler_config, dict):
                config.perceiver_resampler_config = PerceiverResamplerConfig(
                    **config.perceiver_resampler_config
                )

        super().__init__(config=config)
        self.gpt_config = config.gpt_config
        self.nt_config = config.nt_config
        self.perceiver_resampler_config = config.perceiver_resampler_config
        self.seq_token_id = config.seq_token_id
        self.bio_pad_token_id = config.bio_pad_token_id
        self.english_pad_token_id = config.english_pad_token_id

        # Correct seq_token_id
        self.seq_token_id -= 1

        self.biobrain_encoder = TorchBioBrainEncoder(nt_config=self.nt_config)
        self.biobrain_decoder = TorchBioBrainDecoder(
            gpt_config=self.gpt_config, seq_token_id=self.seq_token_id
        )
        self.projection_model = TorchMultiModalPerceiverResamplerProjection(
            perceiver_resampler_config=self.perceiver_resampler_config,
            input_embed_dim=self.nt_config.embed_dim,
            embed_dim=self.gpt_config.embed_dim,
            english_vocab_size=self.gpt_config.vocab_size,
            bio_pad_token_id=self.bio_pad_token_id,
            english_pad_token_id=self.english_pad_token_id,
        )

    def forward(
        self,
        multi_omics_tokens_ids: tuple[torch.Tensor, torch.Tensor],
        projection_english_tokens_ids: torch.Tensor,
        projected_bio_embeddings: torch.Tensor = None,
    ) -> dict[str, torch.Tensor]:
        """

        Args:
            multi_omics_tokens_ids (Tuple[torch.Tensor, torch.Tensor]):
                english_tokens_ids: Represents the prompt tokens (english tokens)
                    Shape (batch_size, num_english_tokens)

                bio_tokens_ids: Represents the bio sequences tokens
                    Shape (batch_size, num_bio_sequences, num_bio_tokens)

            projection_english_tokens_ids (torch.Tensor):
                Shape (batch_size, num_english_tokens)

            projected_bio_embeddings (projected_bio_embeddings, optional):
                Shape (batch_size, num_bio_sequencse, ?, embed_dim).
                Defaults to None.

        Returns:
            dict[str, torch.Tensor] containing:
                - logits:
                    Shape (batch_size, num_tokens, vocab_size)

                - projected_bio_embeddings:
                    Shape (batch_size, num_bio_sequences, ?, embed_dim)
        """
        english_token_ids, bio_token_ids = multi_omics_tokens_ids
        english_token_ids = english_token_ids.clone()
        bio_token_ids = bio_token_ids.clone()
        projection_english_tokens_ids = projection_english_tokens_ids.clone()
        if projected_bio_embeddings is not None:
            projected_bio_embeddings = projected_bio_embeddings.clone()

        # Replace config.vocab_size value in english tokens
        # We do this because the default vocab size (32000) doesn't match with the
        # number of tokens because of seq_token_id(=32000) that was added
        # Therefore, we will put seq_token_id to 31999
        # (I will also put token n°31999 to 0, which is for unknown token)
        # This is a workaround to avoid having to change the vocab size in the config
        vocab_size = self.gpt_config.vocab_size
        # Replace vocab
        english_token_ids[english_token_ids == vocab_size - 1] = 0
        projection_english_tokens_ids[
            projection_english_tokens_ids == vocab_size - 1
        ] = 0
        english_token_ids[english_token_ids == vocab_size] = vocab_size - 1
        projection_english_tokens_ids[projection_english_tokens_ids == vocab_size] = (
            vocab_size - 1
        )

        if bio_token_ids is None:
            projected_bio_embeddings = None
        else:
            num_bio_sequences = bio_token_ids.shape[1]

            if projected_bio_embeddings is None:
                # Compute bio sequences embeddings
                bio_embeddings_list = [
                    self.biobrain_encoder(bio_token_ids=bio_token_ids[:, bio_seq_num])
                    for bio_seq_num in range(num_bio_sequences)
                ]

                # Project these embeddings
                projected_bio_embeddings = [
                    self.projection_model(
                        bio_token_ids=bio_token_ids[:, bio_seq_num],
                        bio_embeddings=bio_embeddings,
                        english_token_ids=projection_english_tokens_ids,
                    )
                    for bio_seq_num, bio_embeddings in enumerate(bio_embeddings_list)
                ]
                projected_bio_embeddings = torch.stack(projected_bio_embeddings, dim=1)

        # decode
        logits = self.biobrain_decoder(
            english_token_ids=english_token_ids,
            projected_bio_embeddings=projected_bio_embeddings,
        )

        outs = {"logits": logits, "projected_bio_embeddings": projected_bio_embeddings}

        return outs


class TorchRotaryEmbedding(torch.nn.Module):
    def __init__(self, config: RotaryEmbeddingConfig):
        super().__init__()

        self.max_seq_len = config.max_seq_len
        self.dim = config.dim
        self.theta = config.theta
        self.sincos_cache = None

    def _create_sinusoidal_positions(self, device: torch.device) -> torch.Tensor:
        """
        Create the sines and cosines for the RoPE.

        Returns:
            Sinusoidal positions of shape (self.max_seq_len, self.dim).
        """
        # Create the inverse frequency based on theta and dim
        inv_freq = 1.0 / (
            self.theta
            ** (torch.arange(0, self.dim, 2, device=device).float() / self.dim)
        )

        # Compute sinusoidal input using the broadcasting
        sinusoid_inp = torch.einsum(
            "i,j->ij", torch.arange(self.max_seq_len, device=device).float(), inv_freq
        )

        # Apply sin and cos to the sinusoidal input
        sin, cos = sinusoid_inp.sin(), sinusoid_inp.cos()

        # Allocate a tensor for the final sin-cos values
        sincos = torch.zeros(
            (self.max_seq_len, self.dim), dtype=torch.float32, device=device
        )

        # Fill the sincos tensor with sin and cos values
        sentinel = self.dim // 2 + self.dim % 2
        sincos[:, :sentinel] = sin
        sincos[:, sentinel:] = cos

        return sincos

    def _rotate_every_two(self, x: torch.Tensor) -> torch.Tensor:
        """
        Prepare a tensor to apply the RoPE mechanism.

        Args:
            x: Tensor of shape (batch_size, seq_len, num_heads, head_dim),
            typically this is the key or query tensor.

        Returns:
            The even indices in the last dimension have their sign flipped.
            Tensor of shape (batch_size, seq_len, num_heads, head_dim).
        """
        # Split the tensor into two halves (odd and even indexed dimensions)
        rotate_half = torch.stack((-x[..., 1::2], x[..., ::2]), dim=-1)

        # Reshape the tensor to the original shape
        rotate_half = rotate_half.view(rotate_half.shape[:-2] + (-1,))
        return rotate_half

    def _apply_rotary_pos_emb(
        self, x: torch.Tensor, sincos: torch.Tensor
    ) -> torch.Tensor:
        """
        Applies rotary embeddings to x.

        Args:
            x: Tensor of shape (batch_size, seq_len, num_heads, head_dim),
            typically this is the key or query tensor.
            sincos: Tuple of sine and cosine tensors for position encoding.

        Returns:
            RoPE embeddings tensor.
        """
        sin_pos, cos_pos = sincos

        # Reshape the sin and cos tensors for broadcasting
        sin_pos = torch.repeat_interleave(sin_pos.unsqueeze(2), repeats=2, dim=-1)
        cos_pos = torch.repeat_interleave(cos_pos.unsqueeze(2), repeats=2, dim=-1)

        # Apply the rotary embedding mechanism
        return (x * cos_pos) + (self._rotate_every_two(x) * sin_pos)

    def __call__(
        self, k: torch.Tensor, q: torch.Tensor, positions: Optional[torch.Tensor] = None
    ) -> tuple[torch.Tensor, torch.Tensor]:
        """
        Applies rotary embeddings to k and q.

        Args:
            k: key tensor of shape (batch_size, seq_len, num_heads, head_dim),
            q: value tensor of shape (batch_size, seq_len, num_heads, head_dim),
            positions: optional positions offset useful when caching,

        Returns:
            RoPE embeddings for the keys and values.
        """
        if self.sincos_cache is None:
            device = k.device
            self.sincos_cache = self._create_sinusoidal_positions(device=device)

        batch_size, seq_len, num_heads, head_dim = k.shape

        # Generate position ids
        position_ids = (
            torch.arange(seq_len, device=k.device).unsqueeze(0).expand(batch_size, -1)
        )

        if positions is not None:
            position_ids += positions

        # Retrieve sincos values using the position_ids
        sincos = self.sincos_cache[position_ids]  # type: ignore

        # Split sincos into sin_pos and cos_pos
        sincos = torch.chunk(sincos, 2, dim=-1)

        # Apply rotary position embedding to key (k) and query (q)
        k_rot = self._apply_rotary_pos_emb(k[..., : self.dim], sincos)
        k_pass = k[..., self.dim :]

        q_rot = self._apply_rotary_pos_emb(q[..., : self.dim], sincos)
        q_pass = q[..., self.dim :]

        # Concatenate the rotated and non-rotated parts
        keys = torch.cat([k_rot, k_pass], dim=-1)
        values = torch.cat([q_rot, q_pass], dim=-1)

        return keys, values


class TorchGptGroupedQueryAttention(nn.Module):
    def __init__(
        self,
        embed_dim: int,
        num_heads: int,
        rope_config: RotaryEmbeddingConfig,
        num_kv_heads: int = None,  # type: ignore
        head_dim: int = None,  # type: ignore
        add_bias_attn: bool = False,  # type: ignore
    ) -> None:
        super().__init__()
        self.num_heads = num_heads
        self.num_kv_heads = num_kv_heads or num_heads
        self.embed_dim = embed_dim
        self.head_dim = head_dim or (embed_dim // num_heads)
        self.add_bias_attn = add_bias_attn
        self.rope = TorchRotaryEmbedding(rope_config)

        self.query_linear = nn.Linear(
            embed_dim, self.num_heads * self.head_dim, bias=add_bias_attn
        )
        self.key_linear = nn.Linear(
            embed_dim, self.num_kv_heads * self.head_dim, bias=add_bias_attn
        )
        self.value_linear = nn.Linear(
            embed_dim, self.num_kv_heads * self.head_dim, bias=add_bias_attn
        )
        self.out_linear = nn.Linear(
            self.num_heads * self.head_dim, embed_dim, bias=add_bias_attn
        )

    def forward(
        self,
        query_inputs: torch.Tensor,
        key_inputs: torch.Tensor,
        value_inputs: torch.Tensor,
        attention_mask: torch.Tensor = None,
    ) -> torch.Tensor:
        batch_size, seq_len, _ = query_inputs.shape

        queries = self.query_linear(query_inputs).view(  # noqa
            batch_size, seq_len, self.num_heads, self.head_dim
        )
        keys = self.key_linear(key_inputs).view(  # noqa
            batch_size, seq_len, self.num_kv_heads, self.head_dim
        )
        values = self.value_linear(value_inputs).view(  # noqa
            batch_size, seq_len, self.num_kv_heads, self.head_dim
        )

        keys, queries = self.rope(keys, queries)

        n_rep = self.num_heads // self.num_kv_heads
        keys = keys.repeat_interleave(n_rep, dim=2)
        values = values.repeat_interleave(n_rep, dim=2)

        attention_logits = torch.einsum("bthd,bThd->bhtT", queries, keys) / (
            self.head_dim**0.5
        )

        if attention_mask is not None:
            attention_logits = attention_logits.masked_fill(
                attention_mask == 0, float("-inf")
            )

        attention_weights = nn.functional.softmax(attention_logits, dim=-1)

        values = torch.einsum("bhtT,bThd->bthd", attention_weights, values)
        values = values.contiguous().view(batch_size, seq_len, -1)

        return self.out_linear(values)


class TorchGptDecoder(nn.Module):
    def __init__(self, config: GptConfig, name: Optional[str] = None):
        super().__init__()
        self.config = config

        self.token_embed = nn.Embedding(config.vocab_size, config.embed_dim)

        if config.norm_type == "layer_norm":
            self.final_norm = nn.LayerNorm(config.embed_dim)
        elif config.norm_type == "RMS_norm":
            self.final_norm = TorchRMSNorm(config.embed_dim, eps=config.rms_norm_eps)
        else:
            raise ValueError(f"unrecognized norm_type in config {config.norm_type}")

        self.layers = nn.ModuleList(
            [
                TorchGptDecoderLayer(
                    embed_dim=config.embed_dim,
                    ffn_embed_dim=config.ffn_embed_dim,
                    num_heads=config.num_heads,
                    rope_config=config.rope_config,
                    norm_type=config.norm_type,
                    parallel_attention_ff=config.parallel_attention_ff,
                    add_bias_ffn=config.add_bias_ffn,
                    ffn_activation_name=config.ffn_activation_name,
                    use_glu_in_ffn=config.use_glu_in_ffn,
                    num_kv_heads=config.num_kv_heads,  # type: ignore
                    add_bias_attn=config.add_bias_attn,
                    rms_norm_eps=config.rms_norm_eps,
                )
                for _ in range(config.num_layers)
            ]
        )

        self.lm_head = TorchSimpleLMHead(
            embed_dim=config.embed_dim,
            alphabet_size=config.vocab_size,
            add_bias_lm_head=config.add_bias_lm_head,
        )

    def apply_transformer_layers(
        self, embeddings: torch.Tensor, attention_mask: torch.Tensor = None
    ) -> torch.Tensor:
        if attention_mask is None:
            attention_mask = build_causal_attention_mask(
                1, embeddings.shape[1], device=embeddings.device
            )
        for layer in self.layers:
            embeddings = layer(embeddings, attention_mask)

        return embeddings

    def forward(
        self, token_ids: torch.Tensor, attention_mask: torch.Tensor = None
    ) -> dict[str, torch.Tensor]:
        if attention_mask is None:
            attention_mask = build_causal_attention_mask(
                1, token_ids.shape[1], device=token_ids.device
            )

        tokens_embeddings = self.token_embed(token_ids)

        after_transformer_embeddings = self.apply_transformer_layers(
            tokens_embeddings, attention_mask=attention_mask
        )

        embeddings = self.final_norm(after_transformer_embeddings)
        logits = self.lm_head(embeddings)
        return {"embeddings": embeddings, "logits": logits}


class TorchSimpleLMHead(nn.Module):
    def __init__(
        self, embed_dim: int, alphabet_size: int, add_bias_lm_head: bool = True
    ) -> None:
        super().__init__()
        self.fc = nn.Linear(embed_dim, alphabet_size, bias=add_bias_lm_head)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.fc(x)


class TorchGptDecoderLayer(nn.Module):
    def __init__(
        self,
        embed_dim: int,
        ffn_embed_dim: int,
        num_heads: int,
        rope_config: RotaryEmbeddingConfig,
        norm_type: str,
        parallel_attention_ff: bool,
        add_bias_ffn: bool,
        ffn_activation_name: str,
        use_glu_in_ffn: bool,
        num_kv_heads: int,
        add_bias_attn: bool,
        rms_norm_eps: float = 1e-6,
    ) -> None:
        super().__init__()
        self.num_heads = num_heads
        self.parallel_attention_ff = parallel_attention_ff
        self.use_glu_in_ffn = use_glu_in_ffn

        # Self-Attention layer
        self.self_attn = TorchGptGroupedQueryAttention(
            embed_dim=embed_dim,
            num_heads=num_heads,
            num_kv_heads=num_kv_heads,
            rope_config=rope_config,
            add_bias_attn=add_bias_attn,
        )

        # Normalization layers
        if norm_type == "layer_norm":
            self.attn_norm = nn.LayerNorm(embed_dim)
            if not self.parallel_attention_ff:
                self.ffn_norm = nn.LayerNorm(embed_dim)
        elif norm_type == "RMS_norm":
            self.attn_norm = TorchRMSNorm(embed_dim, eps=rms_norm_eps)
            if not self.parallel_attention_ff:
                self.ffn_norm = TorchRMSNorm(embed_dim, eps=rms_norm_eps)
        else:
            raise ValueError(f"unrecognized norm_type: {norm_type}")

        # Feedforward network
        self.activation = get_activation_fn(ffn_activation_name)
        ffn_hidden_dim = ffn_embed_dim * (2 if use_glu_in_ffn else 1)
        self.fc1 = nn.Linear(embed_dim, ffn_hidden_dim, bias=add_bias_ffn)
        self.fc2 = nn.Linear(ffn_embed_dim, embed_dim, bias=add_bias_ffn)

    def forward(
        self, embeddings: torch.Tensor, attention_mask: torch.Tensor
    ) -> torch.Tensor:
        residuals = embeddings

        if self.parallel_attention_ff:
            # Parallel Attention + MLP
            embeddings_normed = self.attn_norm(embeddings)

            attn_output, _ = self.self_attn(
                embeddings_normed,
                embeddings_normed,
                embeddings_normed,
                attn_mask=attention_mask,
            )
            ffn_output = self.mlp(embeddings_normed)  # type: ignore

            return residuals + attn_output + ffn_output
        else:
            # Sequential Attention + MLP
            normed_embeddings = self.attn_norm(embeddings)

            attn_output = embeddings + self.self_attn(
                normed_embeddings,
                normed_embeddings,
                normed_embeddings,
                attention_mask=attention_mask,
            )

            normed_embeddings2 = self.ffn_norm(attn_output)
            ffn_output = self.mlp(normed_embeddings2)  # type: ignore
            return attn_output + ffn_output  # Residual connection

    def mlp(self, x: torch.Tensor) -> torch.Tensor:
        """Applies the feedforward network (MLP) with optional GLU."""
        ffn_output = self.fc1(x)

        if self.use_glu_in_ffn:
            ffn_output1, ffn_output2 = ffn_output.chunk(2, dim=-1)
            ffn_output = self.activation(ffn_output1) * ffn_output2
        else:
            ffn_output = self.activation(ffn_output)

        return self.fc2(ffn_output)


class TorchRMSNorm(nn.Module):
    def __init__(self, dim: int, eps: float = 1e-6) -> None:
        super().__init__()
        self.eps = eps
        self.scale = nn.Parameter(torch.ones(dim))

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return (
            x
            * self.scale
            / torch.sqrt(torch.mean(x**2, dim=-1, keepdim=True) + self.eps)
        )


def get_activation_fn(activation_name: str):  # type: ignore
    activations = {
        "gelu": nn.functional.gelu,
        "relu": nn.functional.relu,
        "swish": nn.functional.silu,
        "silu": nn.functional.silu,
    }
    return activations.get(activation_name, nn.functional.relu)


def build_causal_attention_mask(
    batch_size: int, seq_len: int, device: torch.device
) -> torch.Tensor:
    """
    Builds a batch of causal masks of shape (batch_size, 1, seq_len, seq_len) to feed
    to an attention layer.

    Args:
        batch_size: Batch size.
        seq_len: Length of the sequences.

    Returns:
        Batch of causal masks.
    """
    mask = torch.ones((batch_size, 1, seq_len, seq_len), device=device)
    causal_mask = torch.tril(mask)
    return causal_mask


@dataclass
class RotaryEmbeddingConfigBis:
    """
    Parameters to initialize the RotaryEmbedding layer. The rescaling factor allows
    to adapt the rotary embeddings to larger lengths than what was used for training.
    One of this strategy is presented in the Yarn paper: https://arxiv.org/pdf/2309.00071.pdf. # noqa
    Args:
    """

    rescaling_factor: Optional[float]


class RotaryEmbeddingBis(torch.nn.Module):
    """
    Rotary position embeddings based on those in
    [RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer).
    Query and keys are transformed by rotation
    matrices which depend on their relative positions.
    """

    def __init__(self, dim: int, rotary_embedding_config: RotaryEmbeddingConfigBis):
        super().__init__()

        # Extract argument from the config
        self.rescaling_factor = rotary_embedding_config.rescaling_factor
        self.upper_freq = 10000
        self.dim = dim

        self._seq_len_cached = None
        self._cos_cached = None
        self._sin_cached = None

    def _apply_rotary_pos_emb(
        self,
        heads: torch.Tensor,
        cos: torch.Tensor,
        sin: torch.Tensor,
    ) -> torch.Tensor:
        """ """
        x_first, x_second = (
            heads[..., : heads.shape[-1] // 2],
            heads[..., heads.shape[-1] // 2 :],
        )

        first_part = x_first * cos - x_second * sin
        second_part = x_second * cos + x_first * sin

        return torch.cat((first_part, second_part), dim=-1)

    def _compute_cos_sin_tables(
        self, x: torch.Tensor, inv_freq: torch.Tensor, seq_dimension: int = 2
    ) -> tuple[torch.Tensor, torch.Tensor]:
        seq_len = x.shape[seq_dimension]
        # Reset the tables if the sequence length has changed,
        # or if we're on a new device (possibly due to tracing for instance)
        self._seq_len_cached = seq_len
        t = torch.arange(x.shape[seq_dimension], device=x.device).type_as(inv_freq)
        # freqs = torch.outer(t, inv_freq)
        freqs = torch.einsum("i, j -> ij", t, inv_freq)

        self._cos_cached = torch.cos(freqs)[None, :, None, :]
        self._sin_cached = torch.sin(freqs)[None, :, None, :]
        # emb = torch.cat((freqs, freqs), dim=-1).to(x.device)

        # self._cos_cached = emb.cos()[None, None, :, :]
        # self._sin_cached = emb.sin()[None, None, :, :]

        return self._cos_cached, self._sin_cached

    def forward(
        self, q: torch.Tensor, k: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        if self.rescaling_factor is None:
            inv_freq = 1.0 / (
                self.upper_freq
                ** (torch.arange(0, self.dim, 2, device=q.device).float() / self.dim)
            )
        else:
            updated_base = self.upper_freq * (
                self.rescaling_factor ** (self.dim / (self.dim - 2))
            )
            inv_freq = 1.0 / (
                updated_base
                ** (torch.arange(0, self.dim, 2, device=q.device).float() / self.dim)
            )

        self._cos_cached, self._sin_cached = self._compute_cos_sin_tables(
            q,
            inv_freq,
            seq_dimension=-3,
        )

        return (
            self._apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached),
            self._apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached),
        )


class MultiHeadAttention(nn.Module):
    def __init__(
        self,
        num_heads: int,
        key_size: int,
        rotary_embedding_config: Optional[RotaryEmbeddingConfigBis] = None,
        add_bias_kv: bool = False,
        value_size: Optional[int] = None,
        model_size: Optional[int] = None,
        name: Optional[str] = None,
    ):
        super().__init__()
        if not model_size:
            model_size = key_size * num_heads
        if not value_size:
            value_size = key_size
        self.model_size = model_size
        self.key_size = key_size
        self.value_size = value_size
        self.add_bias_kv = add_bias_kv
        self.name = name
        self.num_heads = num_heads
        self._rotary_embedding_config = rotary_embedding_config

        self.w_k = nn.Linear(self.model_size, self.num_heads * self.key_size)
        self.w_q = nn.Linear(self.model_size, self.num_heads * self.key_size)
        self.w_v = nn.Linear(self.model_size, self.num_heads * self.value_size)
        self.output = nn.Linear(self.num_heads * self.value_size, self.model_size)
        if self._rotary_embedding_config:
            self._rotary_embedding = RotaryEmbeddingBis(
                self.key_size, self._rotary_embedding_config
            )

    def apply_rotary_embeddings(
        self,
        query: torch.Tensor,
        key: torch.Tensor,
    ) -> tuple[torch.Tensor, torch.Tensor]:
        """ """
        query, key = self._rotary_embedding(query, key)
        return query, key

    def forward(
        self,
        query: torch.Tensor,
        key: torch.Tensor,
        value: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        attention_weight_bias: Optional[torch.Tensor] = None,
    ) -> dict[str, torch.Tensor]:
        """
        Returns:
            dictionary containing attention weights
            and outputs.
        """
        key_heads = self.w_k(key).reshape(
            (*key.shape[:-1], self.num_heads, self.key_size)
        )
        query_heads = self.w_q(query).reshape(
            (*query.shape[:-1], self.num_heads, self.key_size)
        )
        value_heads = self.w_v(value).reshape(
            (*value.shape[:-1], self.num_heads, self.value_size)
        )
        if self._rotary_embedding_config:
            query_heads, key_heads = self.apply_rotary_embeddings(
                query_heads, key_heads
            )
        attention_weights = torch.einsum(
            "...thd, ...Thd -> ...htT", query_heads, key_heads
        )
        sqrt_key_size = np.sqrt(self.key_size)
        attention_weights = attention_weights / sqrt_key_size
        if attention_mask is not None:
            attention_weights = torch.where(attention_mask, attention_weights, -1e30)
        if attention_weight_bias is not None:
            attention_weights = F.softmax(
                attention_weights + attention_weight_bias, dim=-1
            )
        else:
            attention_weights = F.softmax(attention_weights, dim=-1)
        value_out = torch.einsum(
            "...htT, ...Thd->...thd", attention_weights, value_heads
        )
        value_out = value_out.reshape((*value_out.shape[:-2], -1))
        embeddings = self.output(value_out)

        return {"attention_weights": attention_weights, "embeddings": embeddings}


class SelfAttentionBlock(nn.Module):
    def __init__(
        self,
        num_heads: int,
        embed_dim: int,
        ffn_embed_dim: int,
        key_size: Optional[int] = None,
        add_bias_kv: bool = False,
        add_bias_fnn: bool = True,
        ffn_activation_name: str = "gelu-no-approx",
        use_glu_in_ffn: bool = False,
        layer_norm_eps: float = 1e-5,  # this is the default haiku value
        pre_layer_norm: bool = True,
        name: Optional[str] = None,
        rotary_embedding_config: Optional[RotaryEmbeddingConfigBis] = None,
    ):
        super().__init__()
        if key_size is None:
            if embed_dim % num_heads != 0:
                raise ValueError(
                    f"The embedding dimension should be divisible by the number of "
                    f"heads, however provided embedding dimension is {embed_dim} and "
                    f"the number of heads is {num_heads}."
                )
            else:
                key_size = embed_dim // num_heads

        # Get ffn activation function
        self._pre_layer_norm = pre_layer_norm
        self._use_glu_in_fnn = use_glu_in_ffn
        # Define layers
        if use_glu_in_ffn:
            # user should multiply ffn_embed_dim by 2/3 when using GLU
            # to keep total number of parameters equal
            # see https://arxiv.org/pdf/2002.05202.pdf. for more details
            # we multiply by 2 here as the output will be split in 2 for GLU
            self.fc1 = nn.Linear(embed_dim, int(2 * ffn_embed_dim), bias=add_bias_fnn)
        else:
            self.fc1 = nn.Linear(embed_dim, ffn_embed_dim, bias=add_bias_fnn)

        self.fc2 = nn.Linear(ffn_embed_dim, embed_dim, bias=add_bias_fnn)

        self.layer_norm_self_attention = nn.LayerNorm(
            embed_dim,
        )
        self.layer_norm_mlp = nn.LayerNorm(embed_dim)
        if ffn_activation_name == "swish":
            self._ffn_activation_fn = nn.SiLU()
        elif ffn_activation_name == "gelu-no-approx":
            self._ffn_activation_fn = nn.GELU(approximate="tanh")
        else:
            self._ffn_activation_fn = getattr(torch.nn, ffn_activation_name)

        self.mha = MultiHeadAttention(
            num_heads=num_heads,
            key_size=key_size,
            add_bias_kv=add_bias_kv,
            model_size=embed_dim,
            name="self_attention",
            rotary_embedding_config=rotary_embedding_config,
        )

    def mlp(self, embed: torch.Tensor) -> torch.Tensor:

        if self._pre_layer_norm:
            x = self.layer_norm_mlp(embed)
        else:
            x = embed

        if self._use_glu_in_fnn:
            x = self.fc1(x)
            x1, x2 = torch.split(x, split_size_or_sections=x.shape[-1] // 2, dim=-1)
            x = self._ffn_activation_fn(x1) * x2
        else:
            x = self._ffn_activation_fn(self.fc1(x))
        x = self.fc2(x)

        if not self._pre_layer_norm:
            x = self.layer_norm_mlp(x + embed)
        return x

    def forward(
        self,
        x: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        attention_weight_bias: Optional[torch.Tensor] = None,
    ) -> dict[str, torch.Tensor]:

        res = x
        if self._pre_layer_norm:
            x = self.layer_norm_self_attention(x)

        output: dict[str, torch.Tensor] = self.mha(
            x,
            x,
            x,
            attention_mask=attention_mask,
            attention_weight_bias=attention_weight_bias,
        )

        if not self._pre_layer_norm:
            output["embeddings"] = self.layer_norm_self_attention(
                output["embeddings"] + res
            )

            x = output["embeddings"]
        else:
            x = output["embeddings"]
            x = res + x

        # MLP
        if not self._pre_layer_norm:
            x = self.mlp(x)
        else:
            x = x + self.mlp(x)

        output["embeddings"] = x
        return output


class RobertaLMHead(nn.Module):
    """
    Roberta Language Model head. Transforms final attention layer output into a
    distribution over tokens at each position.
    """

    def __init__(self, embed_dim: int, alphabet_size: int):
        """
        Args:
            embed_dim: Embedding dimension.
            alphabet_size: Number of tokens in the alphabet.
        """
        super().__init__()
        self.embed_dim = embed_dim
        self.alphabet_size = alphabet_size

        # Define layers
        self._first_layer_norm = nn.LayerNorm(embed_dim, elementwise_affine=True)
        self._fc1 = nn.Linear(embed_dim, embed_dim)
        self._second_layer_norm = nn.LayerNorm(embed_dim, elementwise_affine=True)
        self._final_fc = nn.Linear(embed_dim, alphabet_size)

    def forward(self, x: torch.Tensor) -> dict:
        x = self._first_layer_norm(x)
        embeddings = x
        x = self._fc1(x)
        x = nn.functional.gelu(x)
        x = self._second_layer_norm(x)
        logits = self._final_fc(x)
        return {"embeddings": embeddings, "logits": logits}


class TorchNucleotideTransformer(nn.Module):
    def __init__(
        self,
        nt_config: NucleotideTransformerConfig,
    ):
        super(TorchNucleotideTransformer, self).__init__()
        self.nt_config = nt_config

        # Other cases are not implemented
        assert nt_config.positional_embedding is None
        assert nt_config.lm_head == "roberta"
        assert nt_config.use_rotary_embedding is True
        assert nt_config.token_dropout is False
        assert nt_config.emb_layer_norm_before is False
        assert nt_config.mask_before_attention is False
        assert nt_config.bias_word_embedding is False
        assert nt_config.use_gradient_checkpointing is False

        self.embed_layer = nn.Embedding(nt_config.alphabet_size, nt_config.embed_dim)

        self.lm_head = RobertaLMHead(
            embed_dim=nt_config.embed_dim,
            alphabet_size=nt_config.alphabet_size,
        )

        self.rotary_embedding_config = RotaryEmbeddingConfigBis(
            rescaling_factor=nt_config.rescaling_factor
        )

        self.attention_blocks = nn.ModuleList(
            [
                SelfAttentionBlock(  # type: ignore
                    num_heads=nt_config.attention_heads,
                    embed_dim=nt_config.embed_dim,
                    key_size=nt_config.key_size,
                    ffn_embed_dim=nt_config.ffn_embed_dim,
                    add_bias_kv=nt_config.add_bias_kv,
                    add_bias_fnn=nt_config.add_bias_ffn,
                    ffn_activation_name=nt_config.ffn_activation_name,
                    use_glu_in_ffn=nt_config.use_glu_in_ffn,
                    rotary_embedding_config=self.rotary_embedding_config,
                    layer_norm_eps=nt_config.layer_norm_eps,
                    pre_layer_norm=nt_config.pre_layer_norm,
                )
                for _ in range(nt_config.num_layers)
            ]
        )

    def forward(
        self, tokens: torch.Tensor, attention_mask: torch.Tensor = None
    ) -> torch.Tensor:
        """
        Computes the embeddings based on the input tokens.

        Args:
            tokens: Input tokens out of the tokenizer of shape (batch_size, seq_len).
            attention_mask: Attention mask of shape (batch_size, 1, seq_len, seq_len).
                If no mask is provided, a mask by default which equals 1 over all non
                pad tokens and 0 over pad tokens is computed.

        Returns:
            Dictionary containing the final embeddings and logits.
        """
        x = self.embed_layer(tokens)

        # RoBERTa's mask scaling factor
        x = self.nt_config.embed_scale * x

        if attention_mask is None:
            attention_mask = build_padding_attention_mask(
                tokens=tokens, pad_token_id=self.nt_config.pad_token_id
            )

        for layer in self.attention_blocks:
            x = layer(x, attention_mask)["embeddings"]

        assert self.nt_config.lm_head == "roberta"
        x = self.lm_head(x)["embeddings"]

        return x


def build_padding_attention_mask(
    tokens: torch.Tensor, pad_token_id: int
) -> torch.Tensor:
    """
    Builds a padding mask from a sequence of tokens by masking <pad> in the attention.

    Args:
        tokens: Batch of sequences of shape (batch_size, seq_len).
        pad_token_id: Int corresponding to the <pad> token to mask.

    Returns:
        Batch of attention masks, masking out <pad> tokens.
    """
    padding_mask = tokens != pad_token_id
    padding_mask = padding_mask.unsqueeze(1)
    padding_mask = torch.einsum("bhT, bht -> bhtT", padding_mask, padding_mask)
    return padding_mask


class TorchBioBrainEncoder(nn.Module):
    def __init__(
        self,
        nt_config: NucleotideTransformerConfig,
    ):
        super(TorchBioBrainEncoder, self).__init__()
        self.nt_config = nt_config
        self.nt_model = TorchNucleotideTransformer(self.nt_config)

    def forward(
        self,
        bio_token_ids: torch.Tensor,
    ) -> torch.Tensor:
        """
        Args:
            bio_token_ids (torch.Tensor):
                Shape (batch_size, num_bio_tokens)

        Returns:
            torch.Tensor:
                Shape (batch_size, num_bio_tokens, embed_dim)
        """
        bio_embeddings = self.nt_model(tokens=bio_token_ids)

        return bio_embeddings


class TorchMultiModalPerceiverResamplerBlock(nn.Module):
    def __init__(
        self,
        num_heads: int,
        embed_dim: int,
        ffn_embed_dim: int,
        key_size: Optional[int] = None,
        add_bias_kv: bool = False,
        add_bias_ffn: bool = True,
        ffn_activation_name: str = "gelu",
        use_glu_in_ffn: bool = False,
    ):
        super().__init__()

        if key_size is None:
            if embed_dim % num_heads != 0:
                raise ValueError(
                    f"Embedding dimension {embed_dim} should be divisible by "
                    f"num_heads {num_heads}."
                )
            key_size = embed_dim // num_heads

        self.num_heads = num_heads
        self.embed_dim = embed_dim
        self.ffn_embed_dim = ffn_embed_dim * 2 if use_glu_in_ffn else ffn_embed_dim
        self.use_glu_in_ffn = use_glu_in_ffn

        self.cross_attention_1 = MultiHeadAttention(
            num_heads=num_heads, key_size=key_size, add_bias_kv=add_bias_kv
        )
        self.cross_attention_2 = MultiHeadAttention(
            num_heads=num_heads, key_size=key_size, add_bias_kv=add_bias_kv
        )

        self.norm_cross_attention_1 = nn.LayerNorm(embed_dim)
        self.norm_cross_attention_2 = nn.LayerNorm(embed_dim)
        self.norm_mlp = nn.LayerNorm(embed_dim)

        self.fc1 = nn.Linear(embed_dim, self.ffn_embed_dim, bias=add_bias_ffn)
        self.fc2 = nn.Linear(self.ffn_embed_dim, embed_dim, bias=add_bias_ffn)

        self.activation_fn = getattr(
            nn.functional, ffn_activation_name, nn.functional.gelu
        )

    def mlp(self, x: torch.Tensor) -> torch.Tensor:
        x = self.norm_mlp(x)
        if self.use_glu_in_ffn:
            x1, x2 = torch.chunk(self.fc1(x), 2, dim=-1)
            x = self.activation_fn(x1) * x2
        else:
            x = self.activation_fn(self.fc1(x))
        return self.fc2(x)

    def forward(
        self,
        x: torch.Tensor,
        cross_attention_embeddings_1: torch.Tensor,
        cross_attention_embeddings_2: torch.Tensor,
        attention_mask_1: Optional[torch.Tensor] = None,
        attention_mask_2: Optional[torch.Tensor] = None,
    ) -> Dict[str, torch.Tensor]:
        res = x
        x = self.norm_cross_attention_1(x)

        attn_output = self.cross_attention_1(
            query=x,
            key=cross_attention_embeddings_1,
            value=cross_attention_embeddings_1,
            attention_mask=attention_mask_1,
        )["embeddings"]
        x = res + attn_output

        res = x
        x = self.norm_cross_attention_2(x)
        attn_output = self.cross_attention_2(
            query=x,
            key=cross_attention_embeddings_2,
            value=cross_attention_embeddings_2,
            attention_mask=attention_mask_2,
        )["embeddings"]
        x = res + attn_output

        x = x + self.mlp(x)

        return {"embeddings": x}


class TorchMultiModalPerceiverResampler(nn.Module):
    """
    Perceiver Resampler model, made of successive PerceiverResamplerBlocks.
    """

    def __init__(
        self,
        config: PerceiverResamplerConfig,
        name: Optional[str] = None,
    ):
        """
        Initialize a Perceiver Resampler model.

        Args:
            config: Dataclass containing model hyperparameters.
            name: Name for module (custom will break weight loading).
        """
        super().__init__()
        self.config = config
        self.name = name
        self.layers = nn.ModuleList(
            [
                TorchMultiModalPerceiverResamplerBlock(
                    num_heads=self.config.attention_heads,
                    embed_dim=self.config.embed_dim,
                    key_size=self.config.key_size,
                    ffn_embed_dim=self.config.ffn_embed_dim,
                    add_bias_kv=self.config.add_bias_kv,
                    add_bias_ffn=self.config.add_bias_ffn,
                    ffn_activation_name=self.config.ffn_activation_name,
                    use_glu_in_ffn=self.config.use_glu_in_ffn,
                )
                for _ in range(self.config.num_layers)
            ]
        )

        self.latent_queries = torch.nn.Parameter(
            torch.randn(self.config.resampled_length, self.config.embed_dim)
            * (
                1.0
                / torch.sqrt(torch.tensor(self.config.embed_dim, dtype=torch.float32))
            )
        )

    def apply_attention_blocks(
        self,
        x: torch.Tensor,
        xf_1: torch.Tensor,
        xf_2: torch.Tensor,
        outs: Dict[str, torch.Tensor],
        attention_mask_1: Optional[torch.Tensor] = None,
        attention_mask_2: Optional[torch.Tensor] = None,
    ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
        """
        Create the blocks of attention layers and applies them.
        """
        for layer in self.layers:
            concat_input_1 = torch.cat([xf_1, x], dim=1)
            concat_input_2 = torch.cat([xf_2, x], dim=1)

            output = layer(
                x=x,
                cross_attention_embeddings_1=concat_input_1,
                cross_attention_embeddings_2=concat_input_2,
                attention_mask_1=attention_mask_1,
                attention_mask_2=attention_mask_2,
            )
            x = output["embeddings"]

        return x, outs

    def forward(
        self,
        input_embeddings_1: torch.Tensor,
        input_embeddings_2: torch.Tensor,
        attention_mask_1: Optional[torch.Tensor] = None,
        attention_mask_2: Optional[torch.Tensor] = None,
    ) -> Dict[str, torch.Tensor]:
        """
        Computes the embeddings based on the input tokens.
        """
        assert (
            input_embeddings_1.shape[-1] == self.config.embed_dim
        ), "The input embedding dim should match the model embed dim"
        assert (
            input_embeddings_2.shape[-1] == self.config.embed_dim
        ), "The input embedding dim should match the model embed dim"

        batch_size = input_embeddings_1.shape[0]

        latent_queries = self.latent_queries.unsqueeze(0).repeat(batch_size, 1, 1)

        outs: Dict[str, torch.Tensor] = {}
        x = latent_queries

        x, outs = self.apply_attention_blocks(
            x=x,
            xf_1=input_embeddings_1,
            xf_2=input_embeddings_2,
            outs=outs,
            attention_mask_1=attention_mask_1,
            attention_mask_2=attention_mask_2,
        )

        outs["embeddings"] = x

        return outs


class TorchMultiModalPerceiverResamplerProjection(nn.Module):
    def __init__(
        self,
        perceiver_resampler_config: PerceiverResamplerConfig,
        input_embed_dim: int,
        embed_dim: int,
        bio_pad_token_id: int,
        english_pad_token_id: int,
        english_vocab_size: int,
    ):
        super().__init__()
        self.config = perceiver_resampler_config
        self.input_embed_dim = input_embed_dim
        self.embed_dim = embed_dim
        self.bio_pad_token_id = bio_pad_token_id
        self.english_pad_token_id = english_pad_token_id
        self.english_vocab_size = english_vocab_size

        self.bio_projection = nn.Linear(input_embed_dim, embed_dim)
        self.token_embedding = nn.Embedding(english_vocab_size, embed_dim)
        self.perceiver_resampler = TorchMultiModalPerceiverResampler(config=self.config)

    def forward(
        self,
        bio_token_ids: torch.Tensor,
        bio_embeddings: torch.Tensor,
        english_token_ids: torch.Tensor,
    ) -> torch.Tensor:
        """
        Args:
            bio_token_ids (torch.Tensor):
                Shape (batch_size, num_bio_tokens)

            bio_embeddings (torch.Tensor):
                Shape (batch_size, num_bio_tokens, embed_dim)

            english_token_ids (torch.Tensor):
                Shape (batch_size, num_english_tokens)
        """
        projected_bio_embeddings = self.bio_projection(bio_embeddings)
        english_embeddings = self.token_embedding(english_token_ids)

        bio_attention_mask = build_perceiver_padding_attention_mask(
            bio_token_ids, self.config.resampled_length, self.bio_pad_token_id
        )
        english_attention_mask = build_perceiver_padding_attention_mask(
            english_token_ids, self.config.resampled_length, self.english_pad_token_id
        )

        projected_embeddings = self.perceiver_resampler(
            input_embeddings_1=projected_bio_embeddings,
            attention_mask_1=bio_attention_mask,
            input_embeddings_2=english_embeddings,
            attention_mask_2=english_attention_mask,
        )["embeddings"]

        return projected_embeddings


def build_perceiver_padding_attention_mask(
    tokens: torch.Tensor, resampled_length: int, pad_token_id: int
) -> torch.Tensor:
    batch_size, seq_len = tokens.shape
    padding_mask = tokens != pad_token_id  # (batch_size, seq_len)

    padding_mask = torch.cat(
        [
            padding_mask,
            torch.ones(
                (batch_size, resampled_length), dtype=torch.bool, device=tokens.device
            ),
        ],
        dim=1,
    )  # (batch_size, seq_len + resampled_length)

    padding_mask = padding_mask[:, None, None, :]
    padding_mask = padding_mask.repeat(1, 1, resampled_length, 1)  # noqa
    return padding_mask