Upload text_generation.py
Browse files- text_generation.py +124 -0
text_generation.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, Pipeline
|
4 |
+
|
5 |
+
|
6 |
+
class TextGenerationPipeline(Pipeline):
|
7 |
+
def __init__(self, model, **kwargs): # type: ignore
|
8 |
+
super().__init__(model=model, **kwargs)
|
9 |
+
# Load tokenizers
|
10 |
+
# TODO: Maybe do this in a better way (for now the easiest way was done)
|
11 |
+
model_name = "InstaDeepAI/ChatNT"
|
12 |
+
self.english_tokenizer = AutoTokenizer.from_pretrained(
|
13 |
+
model_name, subfolder="english_tokenizer"
|
14 |
+
)
|
15 |
+
self.bio_tokenizer = AutoTokenizer.from_pretrained(
|
16 |
+
model_name, subfolder="bio_tokenizer"
|
17 |
+
)
|
18 |
+
|
19 |
+
def _sanitize_parameters(self, **kwargs: dict) -> tuple[dict, dict, dict]:
|
20 |
+
preprocess_kwargs = {}
|
21 |
+
forward_kwargs = {}
|
22 |
+
postprocess_kwargs = {} # type: ignore
|
23 |
+
|
24 |
+
if "max_num_tokens_to_decode" in kwargs:
|
25 |
+
forward_kwargs["max_num_tokens_to_decode"] = kwargs[
|
26 |
+
"max_num_tokens_to_decode"
|
27 |
+
]
|
28 |
+
if "english_tokens_max_length" in kwargs:
|
29 |
+
preprocess_kwargs["english_tokens_max_length"] = kwargs[
|
30 |
+
"english_tokens_max_length"
|
31 |
+
]
|
32 |
+
if "bio_tokens_max_length" in kwargs:
|
33 |
+
preprocess_kwargs["bio_tokens_max_length"] = kwargs["bio_tokens_max_length"]
|
34 |
+
|
35 |
+
return preprocess_kwargs, forward_kwargs, postprocess_kwargs
|
36 |
+
|
37 |
+
def preprocess(
|
38 |
+
self,
|
39 |
+
inputs: dict,
|
40 |
+
english_tokens_max_length: int = 512,
|
41 |
+
bio_tokens_max_length: int = 512,
|
42 |
+
) -> dict:
|
43 |
+
english_sequence = inputs["english_sequence"]
|
44 |
+
dna_sequences = inputs["dna_sequences"]
|
45 |
+
|
46 |
+
context = "A chat between a curious user and an artificial intelligence assistant that can handle bio sequences. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: " # noqa
|
47 |
+
space = " "
|
48 |
+
if english_sequence[-1] == " ":
|
49 |
+
space = ""
|
50 |
+
english_sequence = context + english_sequence + space + "ASSISTANT:"
|
51 |
+
|
52 |
+
english_tokens = self.english_tokenizer(
|
53 |
+
english_sequence,
|
54 |
+
return_tensors="pt",
|
55 |
+
padding="max_length",
|
56 |
+
truncation=True,
|
57 |
+
max_length=english_tokens_max_length,
|
58 |
+
).input_ids
|
59 |
+
bio_tokens = self.bio_tokenizer(
|
60 |
+
dna_sequences,
|
61 |
+
return_tensors="pt",
|
62 |
+
padding="max_length",
|
63 |
+
max_length=bio_tokens_max_length,
|
64 |
+
truncation=True,
|
65 |
+
).input_ids.unsqueeze(0)
|
66 |
+
|
67 |
+
return {"english_tokens": english_tokens, "bio_tokens": bio_tokens}
|
68 |
+
|
69 |
+
def _forward(self, model_inputs: dict, max_num_tokens_to_decode: int = 50) -> dict:
|
70 |
+
english_tokens = model_inputs["english_tokens"].clone()
|
71 |
+
bio_tokens = model_inputs["bio_tokens"].clone()
|
72 |
+
projected_bio_embeddings = None
|
73 |
+
|
74 |
+
actual_num_steps = 0
|
75 |
+
with torch.no_grad():
|
76 |
+
for _ in range(max_num_tokens_to_decode):
|
77 |
+
# Check if no more pad token id
|
78 |
+
if (
|
79 |
+
self.english_tokenizer.pad_token_id
|
80 |
+
not in english_tokens[0].cpu().numpy()
|
81 |
+
):
|
82 |
+
break
|
83 |
+
|
84 |
+
# Predictions
|
85 |
+
outs = self.model(
|
86 |
+
multi_omics_tokens_ids=(english_tokens, bio_tokens),
|
87 |
+
projection_english_tokens_ids=english_tokens,
|
88 |
+
projected_bio_embeddings=projected_bio_embeddings,
|
89 |
+
)
|
90 |
+
projected_bio_embeddings = outs["projected_bio_embeddings"]
|
91 |
+
logits = outs["logits"].detach().cpu().numpy()
|
92 |
+
|
93 |
+
# Get predicted token
|
94 |
+
first_idx_pad_token = np.where(
|
95 |
+
english_tokens[0].cpu() == self.english_tokenizer.pad_token_id
|
96 |
+
)[0][0]
|
97 |
+
predicted_token = np.argmax(logits[0, first_idx_pad_token - 1])
|
98 |
+
|
99 |
+
# If it's <eos> then stop, else add the predicted token
|
100 |
+
if predicted_token == self.english_tokenizer.eos_token_id:
|
101 |
+
break
|
102 |
+
else:
|
103 |
+
english_tokens[0, first_idx_pad_token] = predicted_token
|
104 |
+
actual_num_steps += 1
|
105 |
+
|
106 |
+
# Get the position where generation started
|
107 |
+
idx_begin_generation = np.where(
|
108 |
+
model_inputs["english_tokens"][0].cpu()
|
109 |
+
== self.english_tokenizer.pad_token_id
|
110 |
+
)[0][0]
|
111 |
+
|
112 |
+
# Get generated tokens
|
113 |
+
generated_tokens = english_tokens[
|
114 |
+
0, idx_begin_generation : idx_begin_generation + actual_num_steps
|
115 |
+
]
|
116 |
+
|
117 |
+
return {
|
118 |
+
"generated_tokens": generated_tokens,
|
119 |
+
}
|
120 |
+
|
121 |
+
def postprocess(self, model_outputs: dict) -> str:
|
122 |
+
generated_tokens = model_outputs["generated_tokens"]
|
123 |
+
generated_sequence: str = self.english_tokenizer.decode(generated_tokens)
|
124 |
+
return generated_sequence
|