Update README.md
Browse files
README.md
CHANGED
@@ -3,4 +3,42 @@ library_name: transformers
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
6 |
+
### How to use
|
7 |
+
|
8 |
+
Until its next release, the transformers library needs to be installed from source with the following command in order to use the models.
|
9 |
+
PyTorch should also be installed.
|
10 |
+
|
11 |
+
```
|
12 |
+
pip install --upgrade git+https://github.com/huggingface/transformers.git
|
13 |
+
pip install torch
|
14 |
+
```
|
15 |
+
|
16 |
+
A small snippet of code is given here in order to infer with the model from a given input.
|
17 |
+
|
18 |
+
```
|
19 |
+
import numpy as np
|
20 |
+
from transformers import AutoModel, AutoTokenizer
|
21 |
+
|
22 |
+
# Load model and tokenizers
|
23 |
+
model = AutoModel.from_pretrained("InstaDeepAI/ChatNT", trust_remote_code=True)
|
24 |
+
english_tokenizer = AutoTokenizer.from_pretrained("InstaDeepAI/ChatNT", subfolder="english_tokenizer")
|
25 |
+
bio_tokenizer = AutoTokenizer.from_pretrained("InstaDeepAI/ChatNT", subfolder="bio_tokenizer")
|
26 |
+
|
27 |
+
# Define custom inputs (note that the number of <DNA> token in the english sequence must be equal to len(dna_sequences))
|
28 |
+
english_sequence = "A chat between a curious user and an artificial intelligence assistant that can handle bio sequences. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Is there any evidence of an acceptor splice site in this sequence <DNA> ?"
|
29 |
+
dna_sequences = ["ATCGGAAAAAGATCCAGAAAGTTATACCAGGCCAATGGGAATCACCTATTACGTGGATAATAGCGATAGTATGTTACCTATAAATTTAACTACGTGGATATCAGGCAGTTACGTTACCAGTCAAGGAGCACCCAAAACTGTCCAGCAACAAGTTAATTTACCCATGAAGATGTACTGCAAGCCTTGCCAACCAGTTAAAGTAGCTACTCATAAGGTAATAAACAGTAATATCGACTTTTTATCCATTTTGATAATTGATTTATAACAGTCTATAACTGATCGCTCTACATAATCTCTATCAGATTACTATTGACACAAACAGAAACCCCGTTAATTTGTATGATATATTTCCCGGTAAGCTTCGATTTTTAATCCTATCGTGACAATTTGGAATGTAACTTATTTCGTATAGGATAAACTAATTTACACGTTTGAATTCCTAGAATATGGAGAATCTAAAGGTCCTGGCAATGCCATCGGCTTTCAATATTATAATGGACCAAAAGTTACTCTATTAGCTTCCAAAACTTCGCGTGAGTACATTAGAACAGAAGAATAACCTTCAATATCGAGAGAGTTACTATCACTAACTATCCTATG"]
|
30 |
+
|
31 |
+
# Tokenize
|
32 |
+
english_tokenized_sequence_length = 512
|
33 |
+
bio_tokenized_sequence_length = 512
|
34 |
+
english_tokens = english_tokenizer(english_sequence, return_tensors="pt", padding="max_length", truncation=True, max_length=english_tokenized_sequence_length).input_ids
|
35 |
+
bio_tokens = bio_tokenizer(dna_sequences, return_tensors="pt", padding="max_length", max_length=bio_tokenized_sequence_length, truncation=True).input_ids
|
36 |
+
bio_tokens = bio_tokens.unsqueeze(0) # to simulate batch_size = 1
|
37 |
+
|
38 |
+
# Predict
|
39 |
+
outs = model(
|
40 |
+
multi_omics_tokens_ids=(english_tokens, bio_tokens),
|
41 |
+
projection_english_tokens_ids=english_tokens,
|
42 |
+
projected_bio_embeddings=None,
|
43 |
+
)
|
44 |
+
```
|