Yanisadel commited on
Commit
8e2b835
·
1 Parent(s): 3279d7a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +39 -1
README.md CHANGED
@@ -3,4 +3,42 @@ library_name: transformers
3
  tags: []
4
  ---
5
 
6
- # The model is currently being tested, it should not be used for now
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  tags: []
4
  ---
5
 
6
+ ### How to use
7
+
8
+ Until its next release, the transformers library needs to be installed from source with the following command in order to use the models.
9
+ PyTorch should also be installed.
10
+
11
+ ```
12
+ pip install --upgrade git+https://github.com/huggingface/transformers.git
13
+ pip install torch
14
+ ```
15
+
16
+ A small snippet of code is given here in order to infer with the model from a given input.
17
+
18
+ ```
19
+ import numpy as np
20
+ from transformers import AutoModel, AutoTokenizer
21
+
22
+ # Load model and tokenizers
23
+ model = AutoModel.from_pretrained("InstaDeepAI/ChatNT", trust_remote_code=True)
24
+ english_tokenizer = AutoTokenizer.from_pretrained("InstaDeepAI/ChatNT", subfolder="english_tokenizer")
25
+ bio_tokenizer = AutoTokenizer.from_pretrained("InstaDeepAI/ChatNT", subfolder="bio_tokenizer")
26
+
27
+ # Define custom inputs (note that the number of <DNA> token in the english sequence must be equal to len(dna_sequences))
28
+ english_sequence = "A chat between a curious user and an artificial intelligence assistant that can handle bio sequences. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Is there any evidence of an acceptor splice site in this sequence <DNA> ?"
29
+ dna_sequences = ["ATCGGAAAAAGATCCAGAAAGTTATACCAGGCCAATGGGAATCACCTATTACGTGGATAATAGCGATAGTATGTTACCTATAAATTTAACTACGTGGATATCAGGCAGTTACGTTACCAGTCAAGGAGCACCCAAAACTGTCCAGCAACAAGTTAATTTACCCATGAAGATGTACTGCAAGCCTTGCCAACCAGTTAAAGTAGCTACTCATAAGGTAATAAACAGTAATATCGACTTTTTATCCATTTTGATAATTGATTTATAACAGTCTATAACTGATCGCTCTACATAATCTCTATCAGATTACTATTGACACAAACAGAAACCCCGTTAATTTGTATGATATATTTCCCGGTAAGCTTCGATTTTTAATCCTATCGTGACAATTTGGAATGTAACTTATTTCGTATAGGATAAACTAATTTACACGTTTGAATTCCTAGAATATGGAGAATCTAAAGGTCCTGGCAATGCCATCGGCTTTCAATATTATAATGGACCAAAAGTTACTCTATTAGCTTCCAAAACTTCGCGTGAGTACATTAGAACAGAAGAATAACCTTCAATATCGAGAGAGTTACTATCACTAACTATCCTATG"]
30
+
31
+ # Tokenize
32
+ english_tokenized_sequence_length = 512
33
+ bio_tokenized_sequence_length = 512
34
+ english_tokens = english_tokenizer(english_sequence, return_tensors="pt", padding="max_length", truncation=True, max_length=english_tokenized_sequence_length).input_ids
35
+ bio_tokens = bio_tokenizer(dna_sequences, return_tensors="pt", padding="max_length", max_length=bio_tokenized_sequence_length, truncation=True).input_ids
36
+ bio_tokens = bio_tokens.unsqueeze(0) # to simulate batch_size = 1
37
+
38
+ # Predict
39
+ outs = model(
40
+ multi_omics_tokens_ids=(english_tokens, bio_tokens),
41
+ projection_english_tokens_ids=english_tokens,
42
+ projected_bio_embeddings=None,
43
+ )
44
+ ```