# This file stores ChatNT and all associated layers and configs from dataclasses import asdict, dataclass, field from typing import Dict, List, Optional, Tuple import numpy as np import torch import torch.nn as nn import torch.nn.functional as F # noqa: N812 from transformers import PretrainedConfig, PreTrainedModel @dataclass class RotaryEmbeddingConfig: """ Rotary Positional Embedding configuration max_seq_len: The number of positions to encode and cache. dim: Dimension of RoPE. theta: Rotation angle. """ max_seq_len: int dim: int theta: float @dataclass class PerceiverResamplerConfig: """ Parameters to initialize an PerceiverResampler model. Args: emb_layer_norm_before: Whether to use layer norm before the first attention layer. attention_heads: Number of attention heads. key_size: The dimension of the query, key, and values within each attention head, if not specified, it is set to attention_heads//embed_dim. It can be useful to set a custom key size if we want to impose the size of the query, key and value tensor ( for example, tensors shaped with power of 2 are more efficiently handled on TPUs ). Note: Parametrizing the model with a custom key size has been done in : Brown, Tom, et al. "Language models are few-shot learners." Advances in neural information processing systems 33 (2020): 1877-1901. embed_dim: Embedding dimension. ffn_embed_dim: Feed forward embedding dimension. num_layers: Number of attention blocks. ffn_activation_name: Activation function to be used in FFN block. Supported names are "gelu", "relu", "swish". use_glu_in_ffn: Whether to use Gated Linear Unit (GLU) in Feed Forward Network (FFN) block. To do a swiGLU (gated-swish) put this arg to True and use swish as ffn_activation_name. Same principle for a gated-relu. To keep the same number of parameters in the FFN block, one should multiply by 2/3 the ffn_embed_dim when using GLU. See https://arxiv.org/pdf/2002.05202.pdf for more details. resampled_length: length of the resampled output of the module use_gradient_checkpointing: Whether to use gradient checkpointing (checkpoint gradients in the forward pass to reduce the computation in the backward). """ # architecture emb_layer_norm_before: bool = False attention_heads: int = 20 key_size: Optional[int] = None embed_dim: int = 1280 ffn_embed_dim: int = 5120 num_layers: int = 24 add_bias_kv: bool = False add_bias_ffn: bool = True ffn_activation_name: str = "gelu-no-approx" use_glu_in_ffn: bool = False resampled_length: int = 64 # performance use_gradient_checkpointing: bool = False def __post_init__(self) -> None: """ Checks that the given values are compatible. """ if self.key_size is None: if not self.embed_dim % self.attention_heads == 0: raise ValueError( f"When no key size is provided, the embedding dimension should be " f"divisible by the number of heads, however provided embedding " f"dimension is {self.embed_dim} and the number of heads is " f"{self.attention_heads}." ) self.key_size = self.embed_dim // self.attention_heads @dataclass class GptConfig: """ Parameters to initialize a Gpt model. NOTE: the pad token is not defined Args: vocab_size: Token vocabulary. eos_token_id: used to stop sentence generation embed_dim: Embedding dimension. ffn_embed_dim: Feed forward embedding dimension. num_heads: Number of attention heads. num_kv_heads: Number of key and value heads to support Grouped-Query and Multi-Query Attention. If None, the number of key and value heads is equal to the number of attention heads. num_layers: Number of Decoder layer_stack rope_config: The configuration for the rotary positional embeddings add_bias_ffn: Add bias in feed forward network block. ffn_activation_name: Activation function to be used in FFN block. Supported names are "gelu", "gelu-no-approx", "relu", "swish". use_glu_in_ffn: whether to use Gated Linear Unit (GLU) in Feed Forward Network (FFN) block. example: To do a swiGLU (gated-swish) put this arg to True and use swish as ffn_activation_name. Same principle for a gated-relu. add_bias_lm_head: whether to use bias in the final LM layer norm_type: The type of norm used ( pre normalization scheme ) used. can be one of ["layer_norm", "RMS_norm"] parallel_attention_ff: Whether to do the attention and the MLP in parallel, and then sum up the results as it is done in Gpt-NeoX : Black, Sid, et al. "Gpt-neox-20b: An open-source autoregressive language model." arXiv preprint arXiv:2204.06745 (2022). It is said to improve the training time of 15% when compiling with JAX use_gradient_checkpointing: Whether to use gradient checkpointing (checkpoint gradients in the forward pass to reduce the computation in the backward). add_bias_attn: Add bias to the attention mechanism (key, query, value, and output projections). """ # vocabulary vocab_size: int eos_token_id: int # architecture embed_dim: int = 16 ffn_embed_dim: int = 64 num_heads: int = 2 num_kv_heads: Optional[int] = None num_layers: int = 2 rope_config: RotaryEmbeddingConfig = field( default_factory=lambda: RotaryEmbeddingConfig( max_seq_len=512, dim=8, theta=10000.0 ) ) add_bias_ffn: bool = False ffn_activation_name: str = "swish" use_glu_in_ffn: bool = True add_bias_lm_head: bool = False norm_type: str = "RMS_norm" rms_norm_eps: float = 1e-6 parallel_attention_ff: bool = True # inference / backward behavior use_gradient_checkpointing: bool = False # architecture params with default values add_bias_attn: bool = False def __post_init__(self) -> None: """ Checks that the given values are compatible. """ if not self.embed_dim % self.num_heads == 0: raise ValueError( f"The embedding dimension should be " f"divisible by the number of heads, however provided embedding " f"dimension is {self.embed_dim} and the number of heads is " f"{self.num_heads}." ) if not self.embed_dim // self.num_heads > 1: raise ValueError( "embed_dim / num_heads must be higher than 2 to apply rotary embeddings" ) if not self.embed_dim // self.num_heads >= self.rope_config.dim: raise ValueError( "embed_dim // num_heads must be higher than rope_config.dim " "to apply rotary embeddings" ) def to_dict(self): # type: ignore output = asdict(self) output["rope_config"] = asdict(self.rope_config) return output @dataclass class NucleotideTransformerConfig: """ Parameters to initialize an NT model. Args: alphabet_size: Token vocabulary. pad_token_id: ID of pad token. mask_token_id: ID of mask token. max_positions: Maximum sequence length. embed_scale: Correction ratio applied to the embeddings to make up for the norm difference between the input during training and inference. emb_layer_norm_before: Whether to use layer norm before the first attention layer. attention_heads: Number of attention heads. key_size: The dimension of the query, key, and values within each attention head, if not specified, it is set to attention_heads//embed_dim. It can be useful to set a custom key size if we want to impose the size of the query, key and value tensor ( for example, tensors shaped with power of 2 are more efficiently handled on TPUs ). Note: Parametrizing the model with a custom key size has been done in : Brown, Tom, et al. "Language models are few-shot learners." Advances in neural information processing systems 33 (2020): 1877-1901. embed_dim: Embedding dimension. ffn_embed_dim: Feed forward embedding dimension. num_layers: Number of attention blocks. positional_embedding: Type of positional embedding to use before the first attention layer. Options: "learned", "learned_standard" "sinusoidal" or None. NOTE: "learned" is the positional embedding of ESM, and "learned_standard" is a more standard one, used for example in DNAbert. lm_head: type of language model head. Options: "simple", "roberta" or None. add_bias_kv: Add bias in attention layer. add_bias_ffn: Add bias in feed forward network block. use_rotary_embedding: Whether to use rotary embeddings. Requires: positional_embeddings = None. rescaling_factor: Scaling factor to use for rotary embeddings. ffn_activation_name: Activation function to be used in FFN block. Supported names are "gelu", "relu", "swish". use_glu_in_ffn: Whether to use Gated Linear Unit (GLU) in Feed Forward Network (FFN) block. To do a swiGLU (gated-swish) put this arg to True and use swish as ffn_activation_name. Same principle for a gated-relu. To keep the same number of parameters in the FFN block, one should multiply by 2/3 the ffn_embed_dim when using GLU. See https://arxiv.org/pdf/2002.05202.pdf for more details. mask_before_attention: Use mask before attention layers. layer_norm_eps: the eps factor in the different layer norms of the model (refer to layer norm implementation) token_dropout: Token dropout. masking_ratio: Masking ratio (used if token dropout is enabled). masking_prob: Masking probability (used if token dropout is enabled). use_gradient_checkpointing: Whether to use gradient checkpointing (checkpoint gradients in the forward pass to reduce the computation in the backward). """ alphabet_size: int pad_token_id: int mask_token_id: int max_positions: int = 1024 embed_scale: float = 1.0 # architecture emb_layer_norm_before: bool = False attention_heads: int = 20 key_size: Optional[int] = None embed_dim: int = 1280 ffn_embed_dim: int = 5120 num_layers: int = 24 positional_embedding: Optional[str] = "learned" lm_head: Optional[str] = "simple" add_bias_kv: bool = False add_bias_ffn: bool = True use_rotary_embedding: bool = False rescaling_factor: Optional[float] = None ffn_activation_name: str = "gelu-no-approx" use_glu_in_ffn: bool = False mask_before_attention: bool = False layer_norm_eps: float = 1e-5 pre_layer_norm: bool = True bias_word_embedding: bool = False # dropout token_dropout: bool = False masking_ratio: float = 0.1 masking_prob: float = 0.8 # logging use_gradient_checkpointing: bool = False # return embeddings_layers_to_save: List[int] = field(default_factory=list) attention_maps_to_save: List[Tuple[int, int]] = field(default_factory=list) def __post_init__(self) -> None: """ Checks that the given values are compatible. """ if self.key_size is None: if not self.embed_dim % self.attention_heads == 0: raise ValueError( f"When no key size is provided, the embedding dimension should be " f"divisible by the number of heads, however provided embedding " f"dimension is {self.embed_dim} and the number of heads is " f"{self.attention_heads}." ) self.key_size = self.embed_dim // self.attention_heads if self.positional_embedding is not None: if type(self.positional_embedding) != str: raise TypeError if self.positional_embedding not in [ "learned", "sinusoidal", "learned_standard", "alibi_dnabert_2", ]: raise ValueError( "The positional_embedding argument should either be None," "`learned`, `sinusoidal`, 'learned_standard' or 'alibi_dnabert_2'." ) if self.lm_head is not None: if type(self.lm_head) != str: raise TypeError if self.lm_head not in ["simple", "roberta"]: raise ValueError( "The lm_head argument should either be None," "`simple` or `roberta`." ) if self.use_rotary_embedding and self.positional_embedding is not None: raise ValueError( "When using rotary embedding, positional_embedding must be set to none" ) if self.add_bias_kv and self.use_rotary_embedding: raise ValueError( "Biases on key and values are not compatible with Rotary embeddings." ) if self.positional_embedding == "alibi_dnabert_2": assert not self.add_bias_kv @dataclass class ChatNTConfig(PretrainedConfig): model_type = "ChatNT" def __init__(self, **kwargs): # type: ignore self.gpt_config: GptConfig = kwargs.get("gpt_config", GptConfig(32000, 3)) self.nt_config: NucleotideTransformerConfig = kwargs.get( "nt_config", NucleotideTransformerConfig(4000, 1, 4) ) self.perceiver_resampler_config: PerceiverResamplerConfig = kwargs.get( "perceiver_resampler_config", PerceiverResamplerConfig() ) self.seq_token_id: int = kwargs.get("seq_token_id", 32000) self.bio_pad_token_id: int = kwargs.get("bio_pad_token_id", 1) self.english_pad_token_id: int = kwargs.get("english_pad_token_id", 2) super().__init__(**kwargs) def to_dict(self): # type: ignore output = super().to_dict() def serialize(obj): # type: ignore return obj.to_dict() if hasattr(obj, "to_dict") else vars(obj) output["gpt_config"] = serialize(self.gpt_config) # type: ignore output["nt_config"] = serialize(self.nt_config) # type: ignore output["perceiver_resampler_config"] = serialize( # type: ignore self.perceiver_resampler_config ) return output class TorchBioBrainDecoder(nn.Module): def __init__( self, gpt_config: GptConfig, seq_token_id: int, ): """ Initializes the BioBrain decoder, using a GPT model for text generation with bio embeddings. Args: gpt_config: Configuration for the GPT model seq_token_id: Index of the SEQ token """ super(TorchBioBrainDecoder, self).__init__() self.gpt_config = gpt_config self.seq_token_id = seq_token_id # Initialize the GPT model (assumed you have it already in PyTorch) self.gpt_model = TorchGptDecoder(self.gpt_config) def forward( self, english_token_ids: torch.Tensor, projected_bio_embeddings: torch.Tensor ) -> torch.Tensor: """ Forward pass through the model. Args: english_token_ids: Tensor of English token IDs with shape (batch_size, num_english_tokens). projected_bio_embeddings: Optional tensor of bio embeddings with shape (batch_size, num_bio_sequences, ?, embed_dim). Returns: torch.Tensor: The logits from the GPT model, shaped (batch_size, num_english_tokens, vocab_size). """ # Compute English token embeddings tokens_embeddings = self.gpt_model.token_embed(english_token_ids) if projected_bio_embeddings is not None: ( batch_size, num_bio_sequences, _, bio_embed_dim, ) = projected_bio_embeddings.shape # Insert the bio embeddings at the SEQ token positions processed_tokens_ids = english_token_ids.clone() for bio_seq_num in range(num_bio_sequences): tokens_embeddings, processed_tokens_ids = self.insert_embeddings( processed_tokens_ids, tokens_embeddings, projected_bio_embeddings[:, bio_seq_num, :, :], bio_seq_num=bio_seq_num, ) # Regular GPT pass through embeddings = self.gpt_model.apply_transformer_layers(tokens_embeddings) embeddings = self.gpt_model.final_norm(embeddings) # Compute logits logits = self.gpt_model.lm_head(embeddings) if projected_bio_embeddings is not None: # Clean logits sequentially processed_tokens_ids = english_token_ids.clone() resampled_length = projected_bio_embeddings.shape[-2] for _ in range(num_bio_sequences): logits, processed_tokens_ids = self.cleanup_logits( tokens=processed_tokens_ids, logits=logits, resampled_length=resampled_length, ) return logits def insert_embeddings( self, tokens: torch.Tensor, input_embeddings: torch.Tensor, resampled_embeddings: torch.Tensor, bio_seq_num: int, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Inserts resampled embeddings in input_embeddings, starting at the SEQ token Args: tokens (torch.Tensor): Shape (batch_size, num_tokens) input_embeddings (torch.Tensor): Shape (batch_size, num_tokens, embed_dim) resampled_embeddings (torch.Tensor): Shape (batch_size, num_bio_sequences, bio_sequence_length, embed_dim) Returns: Tuple[torch.Tensor, torch.Tensor]: - input_embeddings with resampled_embeddings inserted at the SEQ token - tokens with the SEQ token set to -1 """ def _insert( tokens_1d: torch.Tensor, input_embeddings_1d: torch.Tensor, resampled_embeddings_1d: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Args: tokens (torch.Tensor): Shape (num_tokens,) input_embeddings (torch.Tensor): Shape (num_tokens, embed_dim,) resampled_embeddings (torch.Tensor): Shape (bio_sequence_length, embed_dim,) """ indices = torch.where(tokens_1d == self.seq_token_id)[0] if indices.numel() > 0: idx = indices[0].item() insertion_pos = idx + resampled_embeddings_1d.shape[-2] * bio_seq_num x = torch.cat( [ input_embeddings_1d[:insertion_pos, :], resampled_embeddings_1d, input_embeddings_1d[insertion_pos:, :], ], dim=0, )[: tokens_1d.shape[0] + 1, :] x = torch.roll(torch.roll(x, shifts=-idx, dims=0), shifts=idx, dims=0)[ :-1, : ] tokens_1d[idx] = -1 return x, tokens_1d else: return ( input_embeddings, tokens_1d, ) # Return unchanged if seq_token_id is not found tokens_acc = [] embeddings_acc = [] for i in range(tokens.shape[0]): embeddings_out, tokens_out = _insert( tokens[i].clone(), input_embeddings[i].clone(), resampled_embeddings[i].clone(), ) tokens_acc.append(tokens_out) embeddings_acc.append(embeddings_out) tokens_acc = torch.stack(tokens_acc) embeddings_acc = torch.stack(embeddings_acc) return embeddings_acc, tokens_acc def cleanup_logits( self, tokens: torch.Tensor, logits: torch.Tensor, resampled_length: int ) -> Tuple[torch.Tensor, torch.Tensor]: """ Removes the logits corresponding to the unused embeddings. Args: tokens: Input english tokens. logits: Input logits. Returns: Cleaned logits, last values will be equal to 0. """ def _clean( token: torch.Tensor, logit: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: indices = torch.where(token == self.seq_token_id)[0] if indices.numel() > 0: idx = indices[0].item() mask_idx = ( torch.arange(logit.shape[0] - resampled_length, device=logit.device) > idx ) mask_idx = mask_idx.unsqueeze(1) # Remove values corresponding to bio tokens logit = ( logit[:-resampled_length] * (~mask_idx) + logit[resampled_length:] * mask_idx ) # Append zeros at the end logit = torch.cat( ( logit, torch.zeros( (resampled_length, logit.shape[1]), dtype=logit.dtype, device=logit.device, ), ) ) # Update token token[idx] = -1 return logit, token else: return logit, token tokens_acc = [] logits_acc = [] for i in range(tokens.shape[0]): logits_out, tokens_out = _clean(tokens[i].clone(), logits[i].clone()) tokens_acc.append(tokens_out) logits_acc.append(logits_out) tokens_acc = torch.stack(tokens_acc) logits_acc = torch.stack(logits_acc) return logits_acc, tokens_acc class TorchMultiOmicsModel(PreTrainedModel): config_class = ChatNTConfig def __init__(self, config: ChatNTConfig) -> None: if isinstance(config, dict): # If config is a dictionary instead of ChatNTConfig (which can happen # depending how the config was saved), we convert it to the config config["gpt_config"]["rope_config"] = RotaryEmbeddingConfig( **config["gpt_config"]["rope_config"] ) config["gpt_config"] = GptConfig(**config["gpt_config"]) config["nt_config"] = NucleotideTransformerConfig(**config["nt_config"]) config["perceiver_resampler_config"] = PerceiverResamplerConfig( **config["perceiver_resampler_config"] ) config = ChatNTConfig(**config) # type: ignore else: if isinstance(config.gpt_config, dict): config.gpt_config["rope_config"] = RotaryEmbeddingConfig( **config.gpt_config["rope_config"] ) config.gpt_config = GptConfig(**config.gpt_config) if isinstance(config.nt_config, dict): config.nt_config = NucleotideTransformerConfig(**config.nt_config) if isinstance(config.perceiver_resampler_config, dict): config.perceiver_resampler_config = PerceiverResamplerConfig( **config.perceiver_resampler_config ) super().__init__(config=config) self.gpt_config = config.gpt_config self.nt_config = config.nt_config self.perceiver_resampler_config = config.perceiver_resampler_config self.seq_token_id = config.seq_token_id self.bio_pad_token_id = config.bio_pad_token_id self.english_pad_token_id = config.english_pad_token_id # Correct seq_token_id self.seq_token_id -= 1 self.biobrain_encoder = TorchBioBrainEncoder(nt_config=self.nt_config) self.biobrain_decoder = TorchBioBrainDecoder( gpt_config=self.gpt_config, seq_token_id=self.seq_token_id ) self.projection_model = TorchMultiModalPerceiverResamplerProjection( perceiver_resampler_config=self.perceiver_resampler_config, input_embed_dim=self.nt_config.embed_dim, embed_dim=self.gpt_config.embed_dim, english_vocab_size=self.gpt_config.vocab_size, bio_pad_token_id=self.bio_pad_token_id, english_pad_token_id=self.english_pad_token_id, ) def forward( self, multi_omics_tokens_ids: tuple[torch.Tensor, torch.Tensor], projection_english_tokens_ids: torch.Tensor, projected_bio_embeddings: torch.Tensor = None, ) -> dict[str, torch.Tensor]: """ Args: multi_omics_tokens_ids (Tuple[torch.Tensor, torch.Tensor]): english_tokens_ids: Represents the prompt tokens (english tokens) Shape (batch_size, num_english_tokens) bio_tokens_ids: Represents the bio sequences tokens Shape (batch_size, num_bio_sequences, num_bio_tokens) projection_english_tokens_ids (torch.Tensor): Shape (batch_size, num_english_tokens) projected_bio_embeddings (projected_bio_embeddings, optional): Shape (batch_size, num_bio_sequencse, ?, embed_dim). Defaults to None. Returns: dict[str, torch.Tensor] containing: - logits: Shape (batch_size, num_tokens, vocab_size) - projected_bio_embeddings: Shape (batch_size, num_bio_sequences, ?, embed_dim) """ english_token_ids, bio_token_ids = multi_omics_tokens_ids english_token_ids = english_token_ids.clone() bio_token_ids = bio_token_ids.clone() projection_english_tokens_ids = projection_english_tokens_ids.clone() if projected_bio_embeddings is not None: projected_bio_embeddings = projected_bio_embeddings.clone() # Replace config.vocab_size value in english tokens # We do this because the default vocab size (32000) doesn't match with the # number of tokens because of seq_token_id(=32000) that was added # Therefore, we will put seq_token_id to 31999 # (I will also put token n°31999 to 0, which is for unknown token) # This is a workaround to avoid having to change the vocab size in the config vocab_size = self.gpt_config.vocab_size # Replace vocab english_token_ids[english_token_ids == vocab_size - 1] = 0 projection_english_tokens_ids[ projection_english_tokens_ids == vocab_size - 1 ] = 0 english_token_ids[english_token_ids == vocab_size] = vocab_size - 1 projection_english_tokens_ids[projection_english_tokens_ids == vocab_size] = ( vocab_size - 1 ) if bio_token_ids is None: projected_bio_embeddings = None else: num_bio_sequences = bio_token_ids.shape[1] if projected_bio_embeddings is None: # Compute bio sequences embeddings bio_embeddings_list = [ self.biobrain_encoder(bio_token_ids=bio_token_ids[:, bio_seq_num]) for bio_seq_num in range(num_bio_sequences) ] # Project these embeddings projected_bio_embeddings = [ self.projection_model( bio_token_ids=bio_token_ids[:, bio_seq_num], bio_embeddings=bio_embeddings, english_token_ids=projection_english_tokens_ids, ) for bio_seq_num, bio_embeddings in enumerate(bio_embeddings_list) ] projected_bio_embeddings = torch.stack(projected_bio_embeddings, dim=1) # decode logits = self.biobrain_decoder( english_token_ids=english_token_ids, projected_bio_embeddings=projected_bio_embeddings, ) outs = {"logits": logits, "projected_bio_embeddings": projected_bio_embeddings} return outs class TorchRotaryEmbedding(torch.nn.Module): def __init__(self, config: RotaryEmbeddingConfig): super().__init__() self.max_seq_len = config.max_seq_len self.dim = config.dim self.theta = config.theta self.sincos_cache = None def _create_sinusoidal_positions(self, device: torch.device) -> torch.Tensor: """ Create the sines and cosines for the RoPE. Returns: Sinusoidal positions of shape (self.max_seq_len, self.dim). """ # Create the inverse frequency based on theta and dim inv_freq = 1.0 / ( self.theta ** (torch.arange(0, self.dim, 2, device=device).float() / self.dim) ) # Compute sinusoidal input using the broadcasting sinusoid_inp = torch.einsum( "i,j->ij", torch.arange(self.max_seq_len, device=device).float(), inv_freq ) # Apply sin and cos to the sinusoidal input sin, cos = sinusoid_inp.sin(), sinusoid_inp.cos() # Allocate a tensor for the final sin-cos values sincos = torch.zeros( (self.max_seq_len, self.dim), dtype=torch.float32, device=device ) # Fill the sincos tensor with sin and cos values sentinel = self.dim // 2 + self.dim % 2 sincos[:, :sentinel] = sin sincos[:, sentinel:] = cos return sincos def _rotate_every_two(self, x: torch.Tensor) -> torch.Tensor: """ Prepare a tensor to apply the RoPE mechanism. Args: x: Tensor of shape (batch_size, seq_len, num_heads, head_dim), typically this is the key or query tensor. Returns: The even indices in the last dimension have their sign flipped. Tensor of shape (batch_size, seq_len, num_heads, head_dim). """ # Split the tensor into two halves (odd and even indexed dimensions) rotate_half = torch.stack((-x[..., 1::2], x[..., ::2]), dim=-1) # Reshape the tensor to the original shape rotate_half = rotate_half.view(rotate_half.shape[:-2] + (-1,)) return rotate_half def _apply_rotary_pos_emb( self, x: torch.Tensor, sincos: torch.Tensor ) -> torch.Tensor: """ Applies rotary embeddings to x. Args: x: Tensor of shape (batch_size, seq_len, num_heads, head_dim), typically this is the key or query tensor. sincos: Tuple of sine and cosine tensors for position encoding. Returns: RoPE embeddings tensor. """ sin_pos, cos_pos = sincos # Reshape the sin and cos tensors for broadcasting sin_pos = torch.repeat_interleave(sin_pos.unsqueeze(2), repeats=2, dim=-1) cos_pos = torch.repeat_interleave(cos_pos.unsqueeze(2), repeats=2, dim=-1) # Apply the rotary embedding mechanism return (x * cos_pos) + (self._rotate_every_two(x) * sin_pos) def __call__( self, k: torch.Tensor, q: torch.Tensor, positions: Optional[torch.Tensor] = None ) -> tuple[torch.Tensor, torch.Tensor]: """ Applies rotary embeddings to k and q. Args: k: key tensor of shape (batch_size, seq_len, num_heads, head_dim), q: value tensor of shape (batch_size, seq_len, num_heads, head_dim), positions: optional positions offset useful when caching, Returns: RoPE embeddings for the keys and values. """ if self.sincos_cache is None: device = k.device self.sincos_cache = self._create_sinusoidal_positions(device=device) batch_size, seq_len, num_heads, head_dim = k.shape # Generate position ids position_ids = ( torch.arange(seq_len, device=k.device).unsqueeze(0).expand(batch_size, -1) ) if positions is not None: position_ids += positions # Retrieve sincos values using the position_ids sincos = self.sincos_cache[position_ids] # type: ignore # Split sincos into sin_pos and cos_pos sincos = torch.chunk(sincos, 2, dim=-1) # Apply rotary position embedding to key (k) and query (q) k_rot = self._apply_rotary_pos_emb(k[..., : self.dim], sincos) k_pass = k[..., self.dim :] q_rot = self._apply_rotary_pos_emb(q[..., : self.dim], sincos) q_pass = q[..., self.dim :] # Concatenate the rotated and non-rotated parts keys = torch.cat([k_rot, k_pass], dim=-1) values = torch.cat([q_rot, q_pass], dim=-1) return keys, values class TorchGptGroupedQueryAttention(nn.Module): def __init__( self, embed_dim: int, num_heads: int, rope_config: RotaryEmbeddingConfig, num_kv_heads: int = None, # type: ignore head_dim: int = None, # type: ignore add_bias_attn: bool = False, # type: ignore ) -> None: super().__init__() self.num_heads = num_heads self.num_kv_heads = num_kv_heads or num_heads self.embed_dim = embed_dim self.head_dim = head_dim or (embed_dim // num_heads) self.add_bias_attn = add_bias_attn self.rope = TorchRotaryEmbedding(rope_config) self.query_linear = nn.Linear( embed_dim, self.num_heads * self.head_dim, bias=add_bias_attn ) self.key_linear = nn.Linear( embed_dim, self.num_kv_heads * self.head_dim, bias=add_bias_attn ) self.value_linear = nn.Linear( embed_dim, self.num_kv_heads * self.head_dim, bias=add_bias_attn ) self.out_linear = nn.Linear( self.num_heads * self.head_dim, embed_dim, bias=add_bias_attn ) def forward( self, query_inputs: torch.Tensor, key_inputs: torch.Tensor, value_inputs: torch.Tensor, attention_mask: torch.Tensor = None, ) -> torch.Tensor: batch_size, seq_len, _ = query_inputs.shape queries = self.query_linear(query_inputs).view( # noqa batch_size, seq_len, self.num_heads, self.head_dim ) keys = self.key_linear(key_inputs).view( # noqa batch_size, seq_len, self.num_kv_heads, self.head_dim ) values = self.value_linear(value_inputs).view( # noqa batch_size, seq_len, self.num_kv_heads, self.head_dim ) keys, queries = self.rope(keys, queries) n_rep = self.num_heads // self.num_kv_heads keys = keys.repeat_interleave(n_rep, dim=2) values = values.repeat_interleave(n_rep, dim=2) attention_logits = torch.einsum("bthd,bThd->bhtT", queries, keys) / ( self.head_dim**0.5 ) if attention_mask is not None: attention_logits = attention_logits.masked_fill( attention_mask == 0, float("-inf") ) attention_weights = nn.functional.softmax(attention_logits, dim=-1) values = torch.einsum("bhtT,bThd->bthd", attention_weights, values) values = values.contiguous().view(batch_size, seq_len, -1) return self.out_linear(values) class TorchGptDecoder(nn.Module): def __init__(self, config: GptConfig, name: Optional[str] = None): super().__init__() self.config = config self.token_embed = nn.Embedding(config.vocab_size, config.embed_dim) if config.norm_type == "layer_norm": self.final_norm = nn.LayerNorm(config.embed_dim) elif config.norm_type == "RMS_norm": self.final_norm = TorchRMSNorm(config.embed_dim, eps=config.rms_norm_eps) else: raise ValueError(f"unrecognized norm_type in config {config.norm_type}") self.layers = nn.ModuleList( [ TorchGptDecoderLayer( embed_dim=config.embed_dim, ffn_embed_dim=config.ffn_embed_dim, num_heads=config.num_heads, rope_config=config.rope_config, norm_type=config.norm_type, parallel_attention_ff=config.parallel_attention_ff, add_bias_ffn=config.add_bias_ffn, ffn_activation_name=config.ffn_activation_name, use_glu_in_ffn=config.use_glu_in_ffn, num_kv_heads=config.num_kv_heads, # type: ignore add_bias_attn=config.add_bias_attn, rms_norm_eps=config.rms_norm_eps, ) for _ in range(config.num_layers) ] ) self.lm_head = TorchSimpleLMHead( embed_dim=config.embed_dim, alphabet_size=config.vocab_size, add_bias_lm_head=config.add_bias_lm_head, ) def apply_transformer_layers( self, embeddings: torch.Tensor, attention_mask: torch.Tensor = None ) -> torch.Tensor: if attention_mask is None: attention_mask = build_causal_attention_mask( 1, embeddings.shape[1], device=embeddings.device ) for layer in self.layers: embeddings = layer(embeddings, attention_mask) return embeddings def forward( self, token_ids: torch.Tensor, attention_mask: torch.Tensor = None ) -> dict[str, torch.Tensor]: if attention_mask is None: attention_mask = build_causal_attention_mask( 1, token_ids.shape[1], device=token_ids.device ) tokens_embeddings = self.token_embed(token_ids) after_transformer_embeddings = self.apply_transformer_layers( tokens_embeddings, attention_mask=attention_mask ) embeddings = self.final_norm(after_transformer_embeddings) logits = self.lm_head(embeddings) return {"embeddings": embeddings, "logits": logits} class TorchSimpleLMHead(nn.Module): def __init__( self, embed_dim: int, alphabet_size: int, add_bias_lm_head: bool = True ) -> None: super().__init__() self.fc = nn.Linear(embed_dim, alphabet_size, bias=add_bias_lm_head) def forward(self, x: torch.Tensor) -> torch.Tensor: return self.fc(x) class TorchGptDecoderLayer(nn.Module): def __init__( self, embed_dim: int, ffn_embed_dim: int, num_heads: int, rope_config: RotaryEmbeddingConfig, norm_type: str, parallel_attention_ff: bool, add_bias_ffn: bool, ffn_activation_name: str, use_glu_in_ffn: bool, num_kv_heads: int, add_bias_attn: bool, rms_norm_eps: float = 1e-6, ) -> None: super().__init__() self.num_heads = num_heads self.parallel_attention_ff = parallel_attention_ff self.use_glu_in_ffn = use_glu_in_ffn # Self-Attention layer self.self_attn = TorchGptGroupedQueryAttention( embed_dim=embed_dim, num_heads=num_heads, num_kv_heads=num_kv_heads, rope_config=rope_config, add_bias_attn=add_bias_attn, ) # Normalization layers if norm_type == "layer_norm": self.attn_norm = nn.LayerNorm(embed_dim) if not self.parallel_attention_ff: self.ffn_norm = nn.LayerNorm(embed_dim) elif norm_type == "RMS_norm": self.attn_norm = TorchRMSNorm(embed_dim, eps=rms_norm_eps) if not self.parallel_attention_ff: self.ffn_norm = TorchRMSNorm(embed_dim, eps=rms_norm_eps) else: raise ValueError(f"unrecognized norm_type: {norm_type}") # Feedforward network self.activation = get_activation_fn(ffn_activation_name) ffn_hidden_dim = ffn_embed_dim * (2 if use_glu_in_ffn else 1) self.fc1 = nn.Linear(embed_dim, ffn_hidden_dim, bias=add_bias_ffn) self.fc2 = nn.Linear(ffn_embed_dim, embed_dim, bias=add_bias_ffn) def forward( self, embeddings: torch.Tensor, attention_mask: torch.Tensor ) -> torch.Tensor: residuals = embeddings if self.parallel_attention_ff: # Parallel Attention + MLP embeddings_normed = self.attn_norm(embeddings) attn_output, _ = self.self_attn( embeddings_normed, embeddings_normed, embeddings_normed, attn_mask=attention_mask, ) ffn_output = self.mlp(embeddings_normed) # type: ignore return residuals + attn_output + ffn_output else: # Sequential Attention + MLP normed_embeddings = self.attn_norm(embeddings) attn_output = embeddings + self.self_attn( normed_embeddings, normed_embeddings, normed_embeddings, attention_mask=attention_mask, ) normed_embeddings2 = self.ffn_norm(attn_output) ffn_output = self.mlp(normed_embeddings2) # type: ignore return attn_output + ffn_output # Residual connection def mlp(self, x: torch.Tensor) -> torch.Tensor: """Applies the feedforward network (MLP) with optional GLU.""" ffn_output = self.fc1(x) if self.use_glu_in_ffn: ffn_output1, ffn_output2 = ffn_output.chunk(2, dim=-1) ffn_output = self.activation(ffn_output1) * ffn_output2 else: ffn_output = self.activation(ffn_output) return self.fc2(ffn_output) class TorchRMSNorm(nn.Module): def __init__(self, dim: int, eps: float = 1e-6) -> None: super().__init__() self.eps = eps self.scale = nn.Parameter(torch.ones(dim)) def forward(self, x: torch.Tensor) -> torch.Tensor: return ( x * self.scale / torch.sqrt(torch.mean(x**2, dim=-1, keepdim=True) + self.eps) ) def get_activation_fn(activation_name: str): # type: ignore activations = { "gelu": nn.functional.gelu, "relu": nn.functional.relu, "swish": nn.functional.silu, "silu": nn.functional.silu, } return activations.get(activation_name, nn.functional.relu) def build_causal_attention_mask( batch_size: int, seq_len: int, device: torch.device ) -> torch.Tensor: """ Builds a batch of causal masks of shape (batch_size, 1, seq_len, seq_len) to feed to an attention layer. Args: batch_size: Batch size. seq_len: Length of the sequences. Returns: Batch of causal masks. """ mask = torch.ones((batch_size, 1, seq_len, seq_len), device=device) causal_mask = torch.tril(mask) return causal_mask @dataclass class RotaryEmbeddingConfigBis: """ Parameters to initialize the RotaryEmbedding layer. The rescaling factor allows to adapt the rotary embeddings to larger lengths than what was used for training. One of this strategy is presented in the Yarn paper: https://arxiv.org/pdf/2309.00071.pdf. # noqa Args: """ rescaling_factor: Optional[float] class RotaryEmbeddingBis(torch.nn.Module): """ Rotary position embeddings based on those in [RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer). Query and keys are transformed by rotation matrices which depend on their relative positions. """ def __init__(self, dim: int, rotary_embedding_config: RotaryEmbeddingConfigBis): super().__init__() # Extract argument from the config self.rescaling_factor = rotary_embedding_config.rescaling_factor self.upper_freq = 10000 self.dim = dim self._seq_len_cached = None self._cos_cached = None self._sin_cached = None def _apply_rotary_pos_emb( self, heads: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor, ) -> torch.Tensor: """ """ x_first, x_second = ( heads[..., : heads.shape[-1] // 2], heads[..., heads.shape[-1] // 2 :], ) first_part = x_first * cos - x_second * sin second_part = x_second * cos + x_first * sin return torch.cat((first_part, second_part), dim=-1) def _compute_cos_sin_tables( self, x: torch.Tensor, inv_freq: torch.Tensor, seq_dimension: int = 2 ) -> tuple[torch.Tensor, torch.Tensor]: seq_len = x.shape[seq_dimension] # Reset the tables if the sequence length has changed, # or if we're on a new device (possibly due to tracing for instance) self._seq_len_cached = seq_len t = torch.arange(x.shape[seq_dimension], device=x.device).type_as(inv_freq) # freqs = torch.outer(t, inv_freq) freqs = torch.einsum("i, j -> ij", t, inv_freq) self._cos_cached = torch.cos(freqs)[None, :, None, :] self._sin_cached = torch.sin(freqs)[None, :, None, :] # emb = torch.cat((freqs, freqs), dim=-1).to(x.device) # self._cos_cached = emb.cos()[None, None, :, :] # self._sin_cached = emb.sin()[None, None, :, :] return self._cos_cached, self._sin_cached def forward( self, q: torch.Tensor, k: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: if self.rescaling_factor is None: inv_freq = 1.0 / ( self.upper_freq ** (torch.arange(0, self.dim, 2, device=q.device).float() / self.dim) ) else: updated_base = self.upper_freq * ( self.rescaling_factor ** (self.dim / (self.dim - 2)) ) inv_freq = 1.0 / ( updated_base ** (torch.arange(0, self.dim, 2, device=q.device).float() / self.dim) ) self._cos_cached, self._sin_cached = self._compute_cos_sin_tables( q, inv_freq, seq_dimension=-3, ) return ( self._apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached), self._apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached), ) class MultiHeadAttention(nn.Module): def __init__( self, num_heads: int, key_size: int, rotary_embedding_config: Optional[RotaryEmbeddingConfigBis] = None, add_bias_kv: bool = False, value_size: Optional[int] = None, model_size: Optional[int] = None, name: Optional[str] = None, ): super().__init__() if not model_size: model_size = key_size * num_heads if not value_size: value_size = key_size self.model_size = model_size self.key_size = key_size self.value_size = value_size self.add_bias_kv = add_bias_kv self.name = name self.num_heads = num_heads self._rotary_embedding_config = rotary_embedding_config self.w_k = nn.Linear(self.model_size, self.num_heads * self.key_size) self.w_q = nn.Linear(self.model_size, self.num_heads * self.key_size) self.w_v = nn.Linear(self.model_size, self.num_heads * self.value_size) self.output = nn.Linear(self.num_heads * self.value_size, self.model_size) if self._rotary_embedding_config: self._rotary_embedding = RotaryEmbeddingBis( self.key_size, self._rotary_embedding_config ) def apply_rotary_embeddings( self, query: torch.Tensor, key: torch.Tensor, ) -> tuple[torch.Tensor, torch.Tensor]: """ """ query, key = self._rotary_embedding(query, key) return query, key def forward( self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, attention_weight_bias: Optional[torch.Tensor] = None, ) -> dict[str, torch.Tensor]: """ Returns: dictionary containing attention weights and outputs. """ key_heads = self.w_k(key).reshape( (*key.shape[:-1], self.num_heads, self.key_size) ) query_heads = self.w_q(query).reshape( (*query.shape[:-1], self.num_heads, self.key_size) ) value_heads = self.w_v(value).reshape( (*value.shape[:-1], self.num_heads, self.value_size) ) if self._rotary_embedding_config: query_heads, key_heads = self.apply_rotary_embeddings( query_heads, key_heads ) attention_weights = torch.einsum( "...thd, ...Thd -> ...htT", query_heads, key_heads ) sqrt_key_size = np.sqrt(self.key_size) attention_weights = attention_weights / sqrt_key_size if attention_mask is not None: attention_weights = torch.where(attention_mask, attention_weights, -1e30) if attention_weight_bias is not None: attention_weights = F.softmax( attention_weights + attention_weight_bias, dim=-1 ) else: attention_weights = F.softmax(attention_weights, dim=-1) value_out = torch.einsum( "...htT, ...Thd->...thd", attention_weights, value_heads ) value_out = value_out.reshape((*value_out.shape[:-2], -1)) embeddings = self.output(value_out) return {"attention_weights": attention_weights, "embeddings": embeddings} class SelfAttentionBlock(nn.Module): def __init__( self, num_heads: int, embed_dim: int, ffn_embed_dim: int, key_size: Optional[int] = None, add_bias_kv: bool = False, add_bias_fnn: bool = True, ffn_activation_name: str = "gelu-no-approx", use_glu_in_ffn: bool = False, layer_norm_eps: float = 1e-5, # this is the default haiku value pre_layer_norm: bool = True, name: Optional[str] = None, rotary_embedding_config: Optional[RotaryEmbeddingConfigBis] = None, ): super().__init__() if key_size is None: if embed_dim % num_heads != 0: raise ValueError( f"The embedding dimension should be divisible by the number of " f"heads, however provided embedding dimension is {embed_dim} and " f"the number of heads is {num_heads}." ) else: key_size = embed_dim // num_heads # Get ffn activation function self._pre_layer_norm = pre_layer_norm self._use_glu_in_fnn = use_glu_in_ffn # Define layers if use_glu_in_ffn: # user should multiply ffn_embed_dim by 2/3 when using GLU # to keep total number of parameters equal # see https://arxiv.org/pdf/2002.05202.pdf. for more details # we multiply by 2 here as the output will be split in 2 for GLU self.fc1 = nn.Linear(embed_dim, int(2 * ffn_embed_dim), bias=add_bias_fnn) else: self.fc1 = nn.Linear(embed_dim, ffn_embed_dim, bias=add_bias_fnn) self.fc2 = nn.Linear(ffn_embed_dim, embed_dim, bias=add_bias_fnn) self.layer_norm_self_attention = nn.LayerNorm( embed_dim, ) self.layer_norm_mlp = nn.LayerNorm(embed_dim) if ffn_activation_name == "swish": self._ffn_activation_fn = nn.SiLU() elif ffn_activation_name == "gelu-no-approx": self._ffn_activation_fn = nn.GELU(approximate="tanh") else: self._ffn_activation_fn = getattr(torch.nn, ffn_activation_name) self.mha = MultiHeadAttention( num_heads=num_heads, key_size=key_size, add_bias_kv=add_bias_kv, model_size=embed_dim, name="self_attention", rotary_embedding_config=rotary_embedding_config, ) def mlp(self, embed: torch.Tensor) -> torch.Tensor: if self._pre_layer_norm: x = self.layer_norm_mlp(embed) else: x = embed if self._use_glu_in_fnn: x = self.fc1(x) x1, x2 = torch.split(x, split_size_or_sections=x.shape[-1] // 2, dim=-1) x = self._ffn_activation_fn(x1) * x2 else: x = self._ffn_activation_fn(self.fc1(x)) x = self.fc2(x) if not self._pre_layer_norm: x = self.layer_norm_mlp(x + embed) return x def forward( self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, attention_weight_bias: Optional[torch.Tensor] = None, ) -> dict[str, torch.Tensor]: res = x if self._pre_layer_norm: x = self.layer_norm_self_attention(x) output: dict[str, torch.Tensor] = self.mha( x, x, x, attention_mask=attention_mask, attention_weight_bias=attention_weight_bias, ) if not self._pre_layer_norm: output["embeddings"] = self.layer_norm_self_attention( output["embeddings"] + res ) x = output["embeddings"] else: x = output["embeddings"] x = res + x # MLP if not self._pre_layer_norm: x = self.mlp(x) else: x = x + self.mlp(x) output["embeddings"] = x return output class RobertaLMHead(nn.Module): """ Roberta Language Model head. Transforms final attention layer output into a distribution over tokens at each position. """ def __init__(self, embed_dim: int, alphabet_size: int): """ Args: embed_dim: Embedding dimension. alphabet_size: Number of tokens in the alphabet. """ super().__init__() self.embed_dim = embed_dim self.alphabet_size = alphabet_size # Define layers self._first_layer_norm = nn.LayerNorm(embed_dim, elementwise_affine=True) self._fc1 = nn.Linear(embed_dim, embed_dim) self._second_layer_norm = nn.LayerNorm(embed_dim, elementwise_affine=True) self._final_fc = nn.Linear(embed_dim, alphabet_size) def forward(self, x: torch.Tensor) -> dict: x = self._first_layer_norm(x) embeddings = x x = self._fc1(x) x = nn.functional.gelu(x) x = self._second_layer_norm(x) logits = self._final_fc(x) return {"embeddings": embeddings, "logits": logits} class TorchNucleotideTransformer(nn.Module): def __init__( self, nt_config: NucleotideTransformerConfig, ): super(TorchNucleotideTransformer, self).__init__() self.nt_config = nt_config # Other cases are not implemented assert nt_config.positional_embedding is None assert nt_config.lm_head == "roberta" assert nt_config.use_rotary_embedding is True assert nt_config.token_dropout is False assert nt_config.emb_layer_norm_before is False assert nt_config.mask_before_attention is False assert nt_config.bias_word_embedding is False assert nt_config.use_gradient_checkpointing is False self.embed_layer = nn.Embedding(nt_config.alphabet_size, nt_config.embed_dim) self.lm_head = RobertaLMHead( embed_dim=nt_config.embed_dim, alphabet_size=nt_config.alphabet_size, ) self.rotary_embedding_config = RotaryEmbeddingConfigBis( rescaling_factor=nt_config.rescaling_factor ) self.attention_blocks = nn.ModuleList( [ SelfAttentionBlock( # type: ignore num_heads=nt_config.attention_heads, embed_dim=nt_config.embed_dim, key_size=nt_config.key_size, ffn_embed_dim=nt_config.ffn_embed_dim, add_bias_kv=nt_config.add_bias_kv, add_bias_fnn=nt_config.add_bias_ffn, ffn_activation_name=nt_config.ffn_activation_name, use_glu_in_ffn=nt_config.use_glu_in_ffn, rotary_embedding_config=self.rotary_embedding_config, layer_norm_eps=nt_config.layer_norm_eps, pre_layer_norm=nt_config.pre_layer_norm, ) for _ in range(nt_config.num_layers) ] ) def forward( self, tokens: torch.Tensor, attention_mask: torch.Tensor = None ) -> torch.Tensor: """ Computes the embeddings based on the input tokens. Args: tokens: Input tokens out of the tokenizer of shape (batch_size, seq_len). attention_mask: Attention mask of shape (batch_size, 1, seq_len, seq_len). If no mask is provided, a mask by default which equals 1 over all non pad tokens and 0 over pad tokens is computed. Returns: Dictionary containing the final embeddings and logits. """ x = self.embed_layer(tokens) # RoBERTa's mask scaling factor x = self.nt_config.embed_scale * x if attention_mask is None: attention_mask = build_padding_attention_mask( tokens=tokens, pad_token_id=self.nt_config.pad_token_id ) for layer in self.attention_blocks: x = layer(x, attention_mask)["embeddings"] assert self.nt_config.lm_head == "roberta" x = self.lm_head(x)["embeddings"] return x def build_padding_attention_mask( tokens: torch.Tensor, pad_token_id: int ) -> torch.Tensor: """ Builds a padding mask from a sequence of tokens by masking in the attention. Args: tokens: Batch of sequences of shape (batch_size, seq_len). pad_token_id: Int corresponding to the token to mask. Returns: Batch of attention masks, masking out tokens. """ padding_mask = tokens != pad_token_id padding_mask = padding_mask.unsqueeze(1) padding_mask = torch.einsum("bhT, bht -> bhtT", padding_mask, padding_mask) return padding_mask class TorchBioBrainEncoder(nn.Module): def __init__( self, nt_config: NucleotideTransformerConfig, ): super(TorchBioBrainEncoder, self).__init__() self.nt_config = nt_config self.nt_model = TorchNucleotideTransformer(self.nt_config) def forward( self, bio_token_ids: torch.Tensor, ) -> torch.Tensor: """ Args: bio_token_ids (torch.Tensor): Shape (batch_size, num_bio_tokens) Returns: torch.Tensor: Shape (batch_size, num_bio_tokens, embed_dim) """ bio_embeddings = self.nt_model(tokens=bio_token_ids) return bio_embeddings class TorchMultiModalPerceiverResamplerBlock(nn.Module): def __init__( self, num_heads: int, embed_dim: int, ffn_embed_dim: int, key_size: Optional[int] = None, add_bias_kv: bool = False, add_bias_ffn: bool = True, ffn_activation_name: str = "gelu", use_glu_in_ffn: bool = False, ): super().__init__() if key_size is None: if embed_dim % num_heads != 0: raise ValueError( f"Embedding dimension {embed_dim} should be divisible by " f"num_heads {num_heads}." ) key_size = embed_dim // num_heads self.num_heads = num_heads self.embed_dim = embed_dim self.ffn_embed_dim = ffn_embed_dim * 2 if use_glu_in_ffn else ffn_embed_dim self.use_glu_in_ffn = use_glu_in_ffn self.cross_attention_1 = MultiHeadAttention( num_heads=num_heads, key_size=key_size, add_bias_kv=add_bias_kv ) self.cross_attention_2 = MultiHeadAttention( num_heads=num_heads, key_size=key_size, add_bias_kv=add_bias_kv ) self.norm_cross_attention_1 = nn.LayerNorm(embed_dim) self.norm_cross_attention_2 = nn.LayerNorm(embed_dim) self.norm_mlp = nn.LayerNorm(embed_dim) self.fc1 = nn.Linear(embed_dim, self.ffn_embed_dim, bias=add_bias_ffn) self.fc2 = nn.Linear(self.ffn_embed_dim, embed_dim, bias=add_bias_ffn) self.activation_fn = getattr( nn.functional, ffn_activation_name, nn.functional.gelu ) def mlp(self, x: torch.Tensor) -> torch.Tensor: x = self.norm_mlp(x) if self.use_glu_in_ffn: x1, x2 = torch.chunk(self.fc1(x), 2, dim=-1) x = self.activation_fn(x1) * x2 else: x = self.activation_fn(self.fc1(x)) return self.fc2(x) def forward( self, x: torch.Tensor, cross_attention_embeddings_1: torch.Tensor, cross_attention_embeddings_2: torch.Tensor, attention_mask_1: Optional[torch.Tensor] = None, attention_mask_2: Optional[torch.Tensor] = None, ) -> Dict[str, torch.Tensor]: res = x x = self.norm_cross_attention_1(x) attn_output = self.cross_attention_1( query=x, key=cross_attention_embeddings_1, value=cross_attention_embeddings_1, attention_mask=attention_mask_1, )["embeddings"] x = res + attn_output res = x x = self.norm_cross_attention_2(x) attn_output = self.cross_attention_2( query=x, key=cross_attention_embeddings_2, value=cross_attention_embeddings_2, attention_mask=attention_mask_2, )["embeddings"] x = res + attn_output x = x + self.mlp(x) return {"embeddings": x} class TorchMultiModalPerceiverResampler(nn.Module): """ Perceiver Resampler model, made of successive PerceiverResamplerBlocks. """ def __init__( self, config: PerceiverResamplerConfig, name: Optional[str] = None, ): """ Initialize a Perceiver Resampler model. Args: config: Dataclass containing model hyperparameters. name: Name for module (custom will break weight loading). """ super().__init__() self.config = config self.name = name self.layers = nn.ModuleList( [ TorchMultiModalPerceiverResamplerBlock( num_heads=self.config.attention_heads, embed_dim=self.config.embed_dim, key_size=self.config.key_size, ffn_embed_dim=self.config.ffn_embed_dim, add_bias_kv=self.config.add_bias_kv, add_bias_ffn=self.config.add_bias_ffn, ffn_activation_name=self.config.ffn_activation_name, use_glu_in_ffn=self.config.use_glu_in_ffn, ) for _ in range(self.config.num_layers) ] ) self.latent_queries = torch.nn.Parameter( torch.randn(self.config.resampled_length, self.config.embed_dim) * ( 1.0 / torch.sqrt(torch.tensor(self.config.embed_dim, dtype=torch.float32)) ) ) def apply_attention_blocks( self, x: torch.Tensor, xf_1: torch.Tensor, xf_2: torch.Tensor, outs: Dict[str, torch.Tensor], attention_mask_1: Optional[torch.Tensor] = None, attention_mask_2: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: """ Create the blocks of attention layers and applies them. """ for layer in self.layers: concat_input_1 = torch.cat([xf_1, x], dim=1) concat_input_2 = torch.cat([xf_2, x], dim=1) output = layer( x=x, cross_attention_embeddings_1=concat_input_1, cross_attention_embeddings_2=concat_input_2, attention_mask_1=attention_mask_1, attention_mask_2=attention_mask_2, ) x = output["embeddings"] return x, outs def forward( self, input_embeddings_1: torch.Tensor, input_embeddings_2: torch.Tensor, attention_mask_1: Optional[torch.Tensor] = None, attention_mask_2: Optional[torch.Tensor] = None, ) -> Dict[str, torch.Tensor]: """ Computes the embeddings based on the input tokens. """ assert ( input_embeddings_1.shape[-1] == self.config.embed_dim ), "The input embedding dim should match the model embed dim" assert ( input_embeddings_2.shape[-1] == self.config.embed_dim ), "The input embedding dim should match the model embed dim" batch_size = input_embeddings_1.shape[0] latent_queries = self.latent_queries.unsqueeze(0).repeat(batch_size, 1, 1) outs: Dict[str, torch.Tensor] = {} x = latent_queries x, outs = self.apply_attention_blocks( x=x, xf_1=input_embeddings_1, xf_2=input_embeddings_2, outs=outs, attention_mask_1=attention_mask_1, attention_mask_2=attention_mask_2, ) outs["embeddings"] = x return outs class TorchMultiModalPerceiverResamplerProjection(nn.Module): def __init__( self, perceiver_resampler_config: PerceiverResamplerConfig, input_embed_dim: int, embed_dim: int, bio_pad_token_id: int, english_pad_token_id: int, english_vocab_size: int, ): super().__init__() self.config = perceiver_resampler_config self.input_embed_dim = input_embed_dim self.embed_dim = embed_dim self.bio_pad_token_id = bio_pad_token_id self.english_pad_token_id = english_pad_token_id self.english_vocab_size = english_vocab_size self.bio_projection = nn.Linear(input_embed_dim, embed_dim) self.token_embedding = nn.Embedding(english_vocab_size, embed_dim) self.perceiver_resampler = TorchMultiModalPerceiverResampler(config=self.config) def forward( self, bio_token_ids: torch.Tensor, bio_embeddings: torch.Tensor, english_token_ids: torch.Tensor, ) -> torch.Tensor: """ Args: bio_token_ids (torch.Tensor): Shape (batch_size, num_bio_tokens) bio_embeddings (torch.Tensor): Shape (batch_size, num_bio_tokens, embed_dim) english_token_ids (torch.Tensor): Shape (batch_size, num_english_tokens) """ projected_bio_embeddings = self.bio_projection(bio_embeddings) english_embeddings = self.token_embedding(english_token_ids) bio_attention_mask = build_perceiver_padding_attention_mask( bio_token_ids, self.config.resampled_length, self.bio_pad_token_id ) english_attention_mask = build_perceiver_padding_attention_mask( english_token_ids, self.config.resampled_length, self.english_pad_token_id ) projected_embeddings = self.perceiver_resampler( input_embeddings_1=projected_bio_embeddings, attention_mask_1=bio_attention_mask, input_embeddings_2=english_embeddings, attention_mask_2=english_attention_mask, )["embeddings"] return projected_embeddings def build_perceiver_padding_attention_mask( tokens: torch.Tensor, resampled_length: int, pad_token_id: int ) -> torch.Tensor: batch_size, seq_len = tokens.shape padding_mask = tokens != pad_token_id # (batch_size, seq_len) padding_mask = torch.cat( [ padding_mask, torch.ones( (batch_size, resampled_length), dtype=torch.bool, device=tokens.device ), ], dim=1, ) # (batch_size, seq_len + resampled_length) padding_mask = padding_mask[:, None, None, :] padding_mask = padding_mask.repeat(1, 1, resampled_length, 1) # noqa return padding_mask