mgelard commited on
Commit
08e03ed
·
verified ·
1 Parent(s): a4a710c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +57 -174
README.md CHANGED
@@ -1,199 +1,82 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
 
30
  <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
 
174
 
175
- **BibTeX:**
 
 
 
176
 
177
- [More Information Needed]
 
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
 
 
 
 
182
 
183
- ## Glossary [optional]
 
 
 
 
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
186
 
187
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
188
 
189
- ## More Information [optional]
 
 
 
190
 
191
- [More Information Needed]
 
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - bulk RNA-seq
5
+ - DNA methylation
6
+ - biology
7
+ - transcriptomics
8
+ - epigenomics
9
+ - multimodal
10
  ---
11
 
12
+ # MOJO
13
 
14
+ MOJO (MultiOmics JOint representation learning) is a model that learns joint representations of bulk RNA-seq and DNA methylation through bimodal masked language modeling and is tailored for cancer-type classification and survival analysis on the TCGA dataset.
15
 
16
+ **Developed by:** [InstaDeep](https://huggingface.co/InstaDeepAI)
17
 
18
+ ### Model Sources
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
  <!-- Provide the basic links for the model. -->
21
 
22
+ - [**Repository**](https://github.com/instadeepai/multiomics-open-research)
23
+ - **Paper:** [Bimodal masked language modeling for bulk RNA-seq and DNA methylation
24
+ representation learning]()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
+ ### How to use
27
 
28
+ Until its next release, the transformers library needs to be installed from source with
29
+ the following command in order to use the models.
30
+ PyTorch should also be installed.
31
 
32
+ ```
33
+ pip install --upgrade git+https://github.com/huggingface/transformers.git
34
+ pip install torch
35
+ ```
36
 
37
+ ## Other notes
38
+ We also provide the params for the MOJO jax model in `jax_params`.
39
 
40
+ A small snippet of code is provided below to run inference with the model using bulk RNA-seq and DNA methylation samples from the [TCGA](https://portal.gdc.cancer.gov/) dataset.
41
 
42
+ ```
43
+ import numpy as np
44
+ import pandas as pd
45
+ from transformers import AutoModel, AutoTokenizer
46
+ from huggingface_hub import hf_hub_download
47
 
48
+ tokenizer = AutoTokenizer.from_pretrained("InstaDeepAI/MOJO", trust_remote_code=True)
49
+ model = AutoModel.from_pretrained(
50
+ "InstaDeepAI/MOJO",
51
+ trust_remote_code=True,
52
+ )
53
 
54
+ n_examples = 4
55
+ omic_dict = {}
56
 
57
+ for omic in ["rnaseq", "methylation"]:
58
+ csv_path = hf_hub_download(
59
+ repo_id="InstaDeepAI/MOJO",
60
+ filename=f"data/tcga_{omic}_sample.csv",
61
+ repo_type="model",
62
+ )
63
+ omic_array = pd.read_csv(csv_path).drop(["identifier", "cohort"], axis=1).to_numpy()[:n_examples, :]
64
+ if omic == "rnaseq":
65
+ omic_array = np.log10(1 + omic_array)
66
+ assert omic_array.shape[1] == model.config.sequence_length
67
+ omic_dict[omic] = omic_array
68
 
69
+ omic_ids = {
70
+ omic: tokens["input_ids"]
71
+ for omic, tokens in tokenizer.batch_encode_plus(omic_dict, pad_to_fixed_length=True, return_tensors="pt").items()
72
+ }
73
 
74
+ omic_mean_embeddings = model(omic_ids)["after_transformer_embedding"].mean(axis=1) # embeddings can be used for downstream tasks.
75
+ ```
76
 
 
77
 
78
+ ### Citing our work
79
 
80
+ ```
81
 
82
+ ```