|
from isoformer_config import IsoformerConfig |
|
from modeling_esm import NTForMaskedLM, MultiHeadAttention |
|
from modeling_esm_original import EsmForMaskedLM |
|
from enformer_pytorch import Enformer, str_to_one_hot, EnformerConfig |
|
from typing import Dict |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import SiLU |
|
from transformers.utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CHECKPOINT_FOR_DOC = "facebook/esm2_t6_8M_UR50D" |
|
_CONFIG_FOR_DOC = "NTConfig" |
|
|
|
ESM_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"facebook/esm2_t6_8M_UR50D", |
|
"facebook/esm2_t12_35M_UR50D", |
|
|
|
|
|
] |
|
|
|
|
|
import math |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
from transformers.file_utils import ( |
|
add_code_sample_docstrings, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
) |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
BaseModelOutputWithPoolingAndCrossAttentions, |
|
MaskedLMOutput, |
|
SequenceClassifierOutput, |
|
TokenClassifierOutput, |
|
) |
|
from transformers.modeling_utils import ( |
|
PreTrainedModel, |
|
find_pruneable_heads_and_indices, |
|
prune_linear_layer, |
|
) |
|
from transformers.models.esm.configuration_esm import EsmConfig |
|
from transformers.utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CHECKPOINT_FOR_DOC = "facebook/esm2_t6_8M_UR50D" |
|
_CONFIG_FOR_DOC = "EsmConfig" |
|
|
|
|
|
def rotate_half(x): |
|
x1, x2 = x.chunk(2, dim=-1) |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(x, cos, sin): |
|
cos = cos[:, :, : x.shape[-2], :] |
|
sin = sin[:, :, : x.shape[-2], :] |
|
|
|
return (x * cos) + (rotate_half(x) * sin) |
|
|
|
|
|
def gelu(x): |
|
""" |
|
This is the gelu implementation from the original ESM repo. Using F.gelu yields subtly wrong results. |
|
""" |
|
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) |
|
|
|
|
|
def symmetrize(x): |
|
"Make layer symmetric in final two dimensions, used for contact prediction." |
|
return x + x.transpose(-1, -2) |
|
|
|
|
|
def average_product_correct(x): |
|
"Perform average product correct, used for contact prediction." |
|
a1 = x.sum(-1, keepdims=True) |
|
a2 = x.sum(-2, keepdims=True) |
|
a12 = x.sum((-1, -2), keepdims=True) |
|
|
|
avg = a1 * a2 |
|
avg.div_(a12) |
|
normalized = x - avg |
|
return normalized |
|
|
|
|
|
class RotaryEmbedding(torch.nn.Module): |
|
""" |
|
Rotary position embeddings based on those in |
|
[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer). Query and keys are transformed by rotation |
|
matrices which depend on their relative positions. |
|
""" |
|
|
|
def __init__(self, dim: int): |
|
super().__init__() |
|
|
|
inv_freq = 1.0 / ( |
|
10000 ** (torch.arange(0, dim, 2, dtype=torch.int64).float() / dim) |
|
) |
|
inv_freq = inv_freq |
|
self.register_buffer("inv_freq", inv_freq) |
|
|
|
self._seq_len_cached = None |
|
self._cos_cached = None |
|
self._sin_cached = None |
|
|
|
def _update_cos_sin_tables(self, x, seq_dimension=2): |
|
seq_len = x.shape[seq_dimension] |
|
|
|
|
|
|
|
if seq_len != self._seq_len_cached or self._cos_cached.device != x.device: |
|
self._seq_len_cached = seq_len |
|
t = torch.arange(x.shape[seq_dimension], device=x.device).type_as( |
|
self.inv_freq |
|
) |
|
freqs = torch.outer(t, self.inv_freq) |
|
emb = torch.cat((freqs, freqs), dim=-1).to(x.device) |
|
|
|
self._cos_cached = emb.cos()[None, None, :, :] |
|
self._sin_cached = emb.sin()[None, None, :, :] |
|
|
|
return self._cos_cached, self._sin_cached |
|
|
|
def forward( |
|
self, q: torch.Tensor, k: torch.Tensor |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
self._cos_cached, self._sin_cached = self._update_cos_sin_tables( |
|
k, seq_dimension=-2 |
|
) |
|
|
|
return ( |
|
apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached), |
|
apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached), |
|
) |
|
|
|
|
|
class EsmContactPredictionHead(nn.Module): |
|
"""Performs symmetrization, apc, and computes a logistic regression on the output features""" |
|
|
|
def __init__( |
|
self, |
|
in_features: int, |
|
bias=True, |
|
eos_idx: int = 2, |
|
): |
|
super().__init__() |
|
self.in_features = in_features |
|
self.eos_idx = eos_idx |
|
self.regression = nn.Linear(in_features, 1, bias) |
|
self.activation = nn.Sigmoid() |
|
|
|
def forward(self, tokens, attentions): |
|
|
|
eos_mask = tokens.ne(self.eos_idx).to(attentions) |
|
eos_mask = eos_mask.unsqueeze(1) * eos_mask.unsqueeze(2) |
|
attentions = attentions * eos_mask[:, None, None, :, :] |
|
attentions = attentions[..., :-1, :-1] |
|
|
|
attentions = attentions[..., 1:, 1:] |
|
batch_size, layers, heads, seqlen, _ = attentions.size() |
|
attentions = attentions.view(batch_size, layers * heads, seqlen, seqlen) |
|
|
|
|
|
attentions = attentions.to( |
|
self.regression.weight.device |
|
) |
|
attentions = average_product_correct(symmetrize(attentions)) |
|
attentions = attentions.permute(0, 2, 3, 1) |
|
return self.activation(self.regression(attentions).squeeze(3)) |
|
|
|
|
|
class EsmEmbeddings(nn.Module): |
|
""" |
|
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. |
|
""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.word_embeddings = nn.Embedding( |
|
config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id |
|
) |
|
|
|
if config.emb_layer_norm_before: |
|
self.layer_norm = nn.LayerNorm( |
|
config.hidden_size, eps=config.layer_norm_eps |
|
) |
|
else: |
|
self.layer_norm = None |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
self.position_embedding_type = getattr( |
|
config, "position_embedding_type", "absolute" |
|
) |
|
self.register_buffer( |
|
"position_ids", |
|
torch.arange(config.max_position_embeddings).expand((1, -1)), |
|
persistent=False, |
|
) |
|
|
|
self.padding_idx = config.pad_token_id |
|
self.position_embeddings = nn.Embedding( |
|
config.max_position_embeddings, |
|
config.hidden_size, |
|
padding_idx=self.padding_idx, |
|
) |
|
self.token_dropout = config.token_dropout |
|
self.mask_token_id = config.mask_token_id |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
position_ids=None, |
|
inputs_embeds=None, |
|
past_key_values_length=0, |
|
): |
|
if position_ids is None: |
|
if input_ids is not None: |
|
|
|
position_ids = create_position_ids_from_input_ids( |
|
input_ids, self.padding_idx, past_key_values_length |
|
) |
|
else: |
|
position_ids = self.create_position_ids_from_inputs_embeds( |
|
inputs_embeds |
|
) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.word_embeddings(input_ids) |
|
|
|
|
|
|
|
embeddings = inputs_embeds |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.token_dropout: |
|
embeddings = embeddings.masked_fill( |
|
(input_ids == self.mask_token_id).unsqueeze(-1), 0.0 |
|
) |
|
mask_ratio_train = ( |
|
0.15 * 0.8 |
|
) |
|
src_lengths = attention_mask.sum(-1) |
|
mask_ratio_observed = (input_ids == self.mask_token_id).sum( |
|
-1 |
|
).float() / src_lengths |
|
embeddings = ( |
|
embeddings |
|
* (1 - mask_ratio_train) |
|
/ (1 - mask_ratio_observed)[:, None, None] |
|
).to(embeddings.dtype) |
|
|
|
if self.position_embedding_type == "absolute": |
|
position_embeddings = self.position_embeddings(position_ids) |
|
embeddings = embeddings + position_embeddings |
|
|
|
if self.layer_norm is not None: |
|
embeddings = self.layer_norm(embeddings) |
|
if attention_mask is not None: |
|
embeddings = (embeddings * attention_mask.unsqueeze(-1)).to( |
|
embeddings.dtype |
|
) |
|
|
|
|
|
|
|
return embeddings |
|
|
|
def create_position_ids_from_inputs_embeds(self, inputs_embeds): |
|
""" |
|
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. |
|
|
|
Args: |
|
inputs_embeds: torch.Tensor |
|
|
|
Returns: torch.Tensor |
|
""" |
|
input_shape = inputs_embeds.size()[:-1] |
|
sequence_length = input_shape[1] |
|
|
|
position_ids = torch.arange( |
|
self.padding_idx + 1, |
|
sequence_length + self.padding_idx + 1, |
|
dtype=torch.long, |
|
device=inputs_embeds.device, |
|
) |
|
return position_ids.unsqueeze(0).expand(input_shape) |
|
|
|
|
|
class EsmSelfAttention(nn.Module): |
|
def __init__(self, config, position_embedding_type=None): |
|
super().__init__() |
|
if config.hidden_size % config.num_attention_heads != 0 and not hasattr( |
|
config, "embedding_size" |
|
): |
|
raise ValueError( |
|
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " |
|
f"heads ({config.num_attention_heads})" |
|
) |
|
|
|
self.num_attention_heads = config.num_attention_heads |
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) |
|
self.all_head_size = self.num_attention_heads * self.attention_head_size |
|
|
|
self.query = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.key = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.value = nn.Linear(config.hidden_size, self.all_head_size) |
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|
self.position_embedding_type = position_embedding_type or getattr( |
|
config, "position_embedding_type", "absolute" |
|
) |
|
self.rotary_embeddings = None |
|
if ( |
|
self.position_embedding_type == "relative_key" |
|
or self.position_embedding_type == "relative_key_query" |
|
): |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.distance_embedding = nn.Embedding( |
|
2 * config.max_position_embeddings - 1, self.attention_head_size |
|
) |
|
elif self.position_embedding_type == "rotary": |
|
self.rotary_embeddings = RotaryEmbedding(dim=self.attention_head_size) |
|
|
|
self.is_decoder = config.is_decoder |
|
|
|
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: |
|
new_x_shape = x.size()[:-1] + ( |
|
self.num_attention_heads, |
|
self.attention_head_size, |
|
) |
|
x = x.view(new_x_shape) |
|
return x.permute(0, 2, 1, 3) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor]: |
|
mixed_query_layer = self.query(hidden_states) |
|
|
|
|
|
|
|
|
|
is_cross_attention = encoder_hidden_states is not None |
|
|
|
if is_cross_attention and past_key_value is not None: |
|
|
|
key_layer = past_key_value[0] |
|
value_layer = past_key_value[1] |
|
attention_mask = encoder_attention_mask |
|
elif is_cross_attention: |
|
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) |
|
attention_mask = encoder_attention_mask |
|
elif past_key_value is not None: |
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
key_layer = torch.cat([past_key_value[0], key_layer], dim=2) |
|
value_layer = torch.cat([past_key_value[1], value_layer], dim=2) |
|
else: |
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
|
|
query_layer = self.transpose_for_scores(mixed_query_layer) |
|
|
|
|
|
|
|
|
|
|
|
query_layer = query_layer * self.attention_head_size**-0.5 |
|
|
|
if self.is_decoder: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
past_key_value = (key_layer, value_layer) |
|
|
|
if self.position_embedding_type == "rotary": |
|
query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer) |
|
|
|
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) |
|
|
|
if ( |
|
self.position_embedding_type == "relative_key" |
|
or self.position_embedding_type == "relative_key_query" |
|
): |
|
seq_length = hidden_states.size()[1] |
|
position_ids_l = torch.arange( |
|
seq_length, dtype=torch.long, device=hidden_states.device |
|
).view(-1, 1) |
|
position_ids_r = torch.arange( |
|
seq_length, dtype=torch.long, device=hidden_states.device |
|
).view(1, -1) |
|
distance = position_ids_l - position_ids_r |
|
positional_embedding = self.distance_embedding( |
|
distance + self.max_position_embeddings - 1 |
|
) |
|
positional_embedding = positional_embedding.to( |
|
dtype=query_layer.dtype |
|
) |
|
|
|
if self.position_embedding_type == "relative_key": |
|
relative_position_scores = torch.einsum( |
|
"bhld,lrd->bhlr", query_layer, positional_embedding |
|
) |
|
attention_scores = attention_scores + relative_position_scores |
|
elif self.position_embedding_type == "relative_key_query": |
|
relative_position_scores_query = torch.einsum( |
|
"bhld,lrd->bhlr", query_layer, positional_embedding |
|
) |
|
relative_position_scores_key = torch.einsum( |
|
"bhrd,lrd->bhlr", key_layer, positional_embedding |
|
) |
|
attention_scores = ( |
|
attention_scores |
|
+ relative_position_scores_query |
|
+ relative_position_scores_key |
|
) |
|
|
|
if attention_mask is not None: |
|
|
|
attention_scores = attention_scores + attention_mask |
|
|
|
|
|
attention_probs = nn.functional.softmax(attention_scores, dim=-1) |
|
|
|
attention_mask_widened = ( |
|
attention_mask.repeat( |
|
attention_probs.shape[0], |
|
attention_probs.shape[1], |
|
attention_probs.shape[2], |
|
1, |
|
).permute(0, 1, 3, 2) |
|
== 0 |
|
) |
|
attention_probs = torch.where( |
|
attention_mask_widened, attention_probs, 0.00097656 |
|
) |
|
|
|
|
|
|
|
|
|
attention_probs = self.dropout(attention_probs) |
|
|
|
|
|
if head_mask is not None: |
|
attention_probs = attention_probs * head_mask |
|
|
|
context_layer = torch.matmul(attention_probs.to(value_layer.dtype), value_layer) |
|
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() |
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) |
|
context_layer = context_layer.view(new_context_layer_shape) |
|
|
|
outputs = ( |
|
(context_layer, attention_probs) if output_attentions else (context_layer,) |
|
) |
|
|
|
if self.is_decoder: |
|
outputs = outputs + (past_key_value,) |
|
return outputs |
|
|
|
|
|
class EsmSelfOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states, input_tensor): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = hidden_states + input_tensor |
|
return hidden_states |
|
|
|
|
|
class EsmAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.self = EsmSelfAttention(config) |
|
self.output = EsmSelfOutput(config) |
|
self.pruned_heads = set() |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
def prune_heads(self, heads): |
|
if len(heads) == 0: |
|
return |
|
heads, index = find_pruneable_heads_and_indices( |
|
heads, |
|
self.self.num_attention_heads, |
|
self.self.attention_head_size, |
|
self.pruned_heads, |
|
) |
|
|
|
|
|
self.self.query = prune_linear_layer(self.self.query, index) |
|
self.self.key = prune_linear_layer(self.self.key, index) |
|
self.self.value = prune_linear_layer(self.self.value, index) |
|
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) |
|
|
|
|
|
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) |
|
self.self.all_head_size = ( |
|
self.self.attention_head_size * self.self.num_attention_heads |
|
) |
|
self.pruned_heads = self.pruned_heads.union(heads) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
past_key_value=None, |
|
output_attentions=False, |
|
): |
|
hidden_states_ln = self.LayerNorm(hidden_states) |
|
self_outputs = self.self( |
|
hidden_states_ln, |
|
attention_mask, |
|
head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
past_key_value, |
|
output_attentions, |
|
) |
|
attention_output = self.output(self_outputs[0], hidden_states) |
|
outputs = (attention_output,) + self_outputs[ |
|
1: |
|
] |
|
return outputs |
|
|
|
|
|
class EsmIntermediate(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = gelu(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class EsmOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states, input_tensor): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = hidden_states + input_tensor |
|
return hidden_states |
|
|
|
|
|
class EsmLayer(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward |
|
self.seq_len_dim = 1 |
|
self.attention = EsmAttention(config) |
|
self.is_decoder = config.is_decoder |
|
self.add_cross_attention = config.add_cross_attention |
|
if self.add_cross_attention: |
|
if not self.is_decoder: |
|
raise RuntimeError( |
|
f"{self} should be used as a decoder model if cross attention is added" |
|
) |
|
self.crossattention = EsmAttention(config) |
|
self.intermediate = EsmIntermediate(config) |
|
self.output = EsmOutput(config) |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
past_key_value=None, |
|
output_attentions=False, |
|
): |
|
|
|
self_attn_past_key_value = ( |
|
past_key_value[:2] if past_key_value is not None else None |
|
) |
|
self_attention_outputs = self.attention( |
|
hidden_states, |
|
attention_mask, |
|
head_mask, |
|
output_attentions=output_attentions, |
|
past_key_value=self_attn_past_key_value, |
|
) |
|
attention_output = self_attention_outputs[0] |
|
|
|
|
|
if self.is_decoder: |
|
outputs = self_attention_outputs[1:-1] |
|
present_key_value = self_attention_outputs[-1] |
|
else: |
|
outputs = self_attention_outputs[ |
|
1: |
|
] |
|
|
|
cross_attn_present_key_value = None |
|
if self.is_decoder and encoder_hidden_states is not None: |
|
if not hasattr(self, "crossattention"): |
|
raise AttributeError( |
|
f"If `encoder_hidden_states` are passed, {self} has to be instantiated" |
|
" with cross-attention layers by setting `config.add_cross_attention=True`" |
|
) |
|
|
|
|
|
cross_attn_past_key_value = ( |
|
past_key_value[-2:] if past_key_value is not None else None |
|
) |
|
cross_attention_outputs = self.crossattention( |
|
attention_output, |
|
attention_mask, |
|
head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
cross_attn_past_key_value, |
|
output_attentions, |
|
) |
|
attention_output = cross_attention_outputs[0] |
|
outputs = ( |
|
outputs + cross_attention_outputs[1:-1] |
|
) |
|
|
|
|
|
cross_attn_present_key_value = cross_attention_outputs[-1] |
|
present_key_value = present_key_value + cross_attn_present_key_value |
|
|
|
layer_output = self.feed_forward_chunk(attention_output) |
|
|
|
outputs = (layer_output,) + outputs |
|
|
|
|
|
if self.is_decoder: |
|
outputs = outputs + (present_key_value,) |
|
return outputs |
|
|
|
def feed_forward_chunk(self, attention_output): |
|
attention_output_ln = self.LayerNorm(attention_output) |
|
intermediate_output = self.intermediate(attention_output_ln) |
|
layer_output = self.output(intermediate_output, attention_output) |
|
return layer_output |
|
|
|
|
|
class EsmEncoder(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.layer = nn.ModuleList( |
|
[EsmLayer(config) for _ in range(config.num_hidden_layers)] |
|
) |
|
self.emb_layer_norm_after = nn.LayerNorm( |
|
config.hidden_size, eps=config.layer_norm_eps |
|
) |
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
past_key_values=None, |
|
use_cache=None, |
|
output_attentions=False, |
|
output_hidden_states=False, |
|
return_dict=True, |
|
): |
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting " |
|
"`use_cache=False`..." |
|
) |
|
use_cache = False |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attentions = () if output_attentions else None |
|
all_cross_attentions = ( |
|
() if output_attentions and self.config.add_cross_attention else None |
|
) |
|
|
|
next_decoder_cache = () if use_cache else None |
|
for i, layer_module in enumerate(self.layer): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
layer_head_mask = head_mask[i] if head_mask is not None else None |
|
past_key_value = past_key_values[i] if past_key_values is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
layer_module.__call__, |
|
hidden_states, |
|
attention_mask, |
|
layer_head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
past_key_value, |
|
output_attentions, |
|
) |
|
else: |
|
layer_outputs = layer_module( |
|
hidden_states, |
|
attention_mask, |
|
layer_head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
past_key_value, |
|
output_attentions, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
if use_cache: |
|
next_decoder_cache = next_decoder_cache + (layer_outputs[-1],) |
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (layer_outputs[1],) |
|
if self.config.add_cross_attention: |
|
all_cross_attentions = all_cross_attentions + (layer_outputs[2],) |
|
|
|
if self.emb_layer_norm_after: |
|
hidden_states = self.emb_layer_norm_after(hidden_states) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
next_decoder_cache, |
|
all_hidden_states, |
|
all_self_attentions, |
|
all_cross_attentions, |
|
] |
|
if v is not None |
|
) |
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_decoder_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
cross_attentions=all_cross_attentions, |
|
) |
|
|
|
|
|
|
|
class EsmPooler(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.activation = nn.Tanh() |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
|
|
|
|
first_token_tensor = hidden_states[:, 0] |
|
pooled_output = self.dense(first_token_tensor) |
|
pooled_output = self.activation(pooled_output) |
|
return pooled_output |
|
|
|
|
|
class EsmPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = EsmConfig |
|
base_model_prefix = "esm" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = [ |
|
"EsmLayer", |
|
"EsmFoldTriangularSelfAttentionBlock", |
|
"EsmEmbeddings", |
|
] |
|
|
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
if isinstance(module, nn.Linear): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
|
|
ESM_START_DOCSTRING = r""" |
|
|
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`EsmConfig`]): Model configuration class with all the parameters of the |
|
model. Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
ESM_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `({0})`): |
|
Indices of input sequence tokens in the vocabulary. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
position_ids (`torch.LongTensor` of shape `({0})`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.max_position_embeddings - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): |
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare ESM Model transformer outputting raw hidden-states without any specific head on top.", |
|
ESM_START_DOCSTRING, |
|
) |
|
class EsmModel(EsmPreTrainedModel): |
|
""" |
|
|
|
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of |
|
cross-attention is added between the self-attention layers, following the architecture described in [Attention is |
|
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, |
|
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. |
|
|
|
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set |
|
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and |
|
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. |
|
""" |
|
|
|
def __init__(self, config, add_pooling_layer=True): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.embeddings = EsmEmbeddings(config) |
|
self.encoder = EsmEncoder(config) |
|
|
|
self.pooler = EsmPooler(config) if add_pooling_layer else None |
|
|
|
self.contact_head = EsmContactPredictionHead( |
|
in_features=config.num_hidden_layers * config.num_attention_heads, bias=True |
|
) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings.word_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.embeddings.word_embeddings = value |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.layer[layer].attention.prune_heads(heads) |
|
|
|
@add_start_docstrings_to_model_forward( |
|
ESM_INPUTS_DOCSTRING.format("(batch_size, sequence_length)") |
|
) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=BaseModelOutputWithPoolingAndCrossAttentions, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: |
|
r""" |
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if |
|
the model is configured as a decoder. |
|
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in |
|
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): |
|
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
""" |
|
output_attentions = ( |
|
output_attentions |
|
if output_attentions is not None |
|
else self.config.output_attentions |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states |
|
if output_hidden_states is not None |
|
else self.config.output_hidden_states |
|
) |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
if self.config.is_decoder: |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
else: |
|
use_cache = False |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError( |
|
"You cannot specify both input_ids and inputs_embeds at the same time" |
|
) |
|
elif input_ids is not None: |
|
|
|
input_shape = input_ids.size() |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
batch_size, seq_length = input_shape |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
|
|
|
|
past_key_values_length = ( |
|
past_key_values[0][0].shape[2] if past_key_values is not None else 0 |
|
) |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones( |
|
((batch_size, seq_length + past_key_values_length)), device=device |
|
) |
|
|
|
|
|
|
|
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask( |
|
attention_mask, input_shape |
|
) |
|
|
|
|
|
|
|
if self.config.is_decoder and encoder_hidden_states is not None: |
|
( |
|
encoder_batch_size, |
|
encoder_sequence_length, |
|
_, |
|
) = encoder_hidden_states.size() |
|
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) |
|
if encoder_attention_mask is None: |
|
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) |
|
encoder_extended_attention_mask = self.invert_attention_mask( |
|
encoder_attention_mask |
|
) |
|
else: |
|
encoder_extended_attention_mask = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) |
|
|
|
embedding_output = self.embeddings( |
|
input_ids=input_ids, |
|
position_ids=position_ids, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
encoder_outputs = self.encoder( |
|
embedding_output, |
|
attention_mask=extended_attention_mask, |
|
head_mask=head_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_extended_attention_mask, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = encoder_outputs[0] |
|
pooled_output = ( |
|
self.pooler(sequence_output) if self.pooler is not None else None |
|
) |
|
|
|
if not return_dict: |
|
return (sequence_output, pooled_output) + encoder_outputs[1:] |
|
|
|
return BaseModelOutputWithPoolingAndCrossAttentions( |
|
last_hidden_state=sequence_output, |
|
pooler_output=pooled_output, |
|
past_key_values=encoder_outputs.past_key_values, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
cross_attentions=encoder_outputs.cross_attentions, |
|
) |
|
|
|
def predict_contacts(self, tokens, attention_mask): |
|
attns = self( |
|
tokens, |
|
attention_mask=attention_mask, |
|
return_dict=True, |
|
output_attentions=True, |
|
).attentions |
|
attns = torch.stack(attns, dim=1) |
|
|
|
|
|
|
|
|
|
attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(3) |
|
attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(4) |
|
return self.contact_head(tokens, attns) |
|
|
|
|
|
@add_start_docstrings( |
|
"""ESM Model with a `language modeling` head on top.""", ESM_START_DOCSTRING |
|
) |
|
class EsmForMaskedLM(EsmPreTrainedModel): |
|
_tied_weights_keys = ["lm_head.decoder.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
if config.is_decoder: |
|
logger.warning( |
|
"If you want to use `EsmForMaskedLM` make sure `config.is_decoder=False` for " |
|
"bi-directional self-attention." |
|
) |
|
|
|
self.esm = EsmModel(config, add_pooling_layer=False) |
|
self.lm_head = EsmLMHead(config) |
|
|
|
self.init_weights() |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head.decoder |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head.decoder = new_embeddings |
|
|
|
@add_start_docstrings_to_model_forward( |
|
ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length") |
|
) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=MaskedLMOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
mask="<mask>", |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, MaskedLMOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., |
|
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the |
|
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` |
|
kwargs (`Dict[str, any]`, optional, defaults to *{}*): |
|
Used to hide legacy arguments that have been deprecated. |
|
""" |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
outputs = self.esm( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = outputs[0] |
|
prediction_scores = self.lm_head(sequence_output) |
|
|
|
masked_lm_loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
|
|
labels = labels.to(prediction_scores.device) |
|
masked_lm_loss = loss_fct( |
|
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1) |
|
) |
|
|
|
if not return_dict: |
|
output = (prediction_scores,) + outputs[2:] |
|
return ( |
|
((masked_lm_loss,) + output) if masked_lm_loss is not None else output |
|
) |
|
|
|
return MaskedLMOutput( |
|
loss=masked_lm_loss, |
|
logits=prediction_scores, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def predict_contacts(self, tokens, attention_mask): |
|
return self.esm.predict_contacts(tokens, attention_mask=attention_mask) |
|
|
|
|
|
class EsmLMHead(nn.Module): |
|
"""ESM Head for masked language modeling.""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) |
|
|
|
def forward(self, features, **kwargs): |
|
x = self.dense(features) |
|
x = gelu(x) |
|
x = self.layer_norm(x) |
|
|
|
|
|
x = self.decoder(x) + self.bias |
|
return x |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
ESM Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled |
|
output) e.g. for GLUE tasks. |
|
""", |
|
ESM_START_DOCSTRING, |
|
) |
|
class EsmForSequenceClassification(EsmPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.config = config |
|
|
|
self.esm = EsmModel(config, add_pooling_layer=False) |
|
self.classifier = EsmClassificationHead(config) |
|
|
|
self.init_weights() |
|
|
|
@add_start_docstrings_to_model_forward( |
|
ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length") |
|
) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=SequenceClassifierOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, SequenceClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
outputs = self.esm( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = outputs[0] |
|
logits = self.classifier(sequence_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
labels = labels.to(logits.device) |
|
|
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and ( |
|
labels.dtype == torch.long or labels.dtype == torch.int |
|
): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(logits, labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
ESM Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for |
|
Named-Entity-Recognition (NER) tasks. |
|
""", |
|
ESM_START_DOCSTRING, |
|
) |
|
class EsmForTokenClassification(EsmPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
|
|
self.esm = EsmModel(config, add_pooling_layer=False) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
self.init_weights() |
|
|
|
@add_start_docstrings_to_model_forward( |
|
ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length") |
|
) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=TokenClassifierOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, TokenClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. |
|
""" |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
outputs = self.esm( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
|
|
sequence_output = self.dropout(sequence_output) |
|
logits = self.classifier(sequence_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
|
|
labels = labels.to(logits.device) |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return TokenClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
class EsmClassificationHead(nn.Module): |
|
"""Head for sentence-level classification tasks.""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
self.out_proj = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
def forward(self, features, **kwargs): |
|
x = features[:, 0, :] |
|
x = self.dropout(x) |
|
x = self.dense(x) |
|
x = torch.tanh(x) |
|
x = self.dropout(x) |
|
x = self.out_proj(x) |
|
return x |
|
|
|
|
|
def create_position_ids_from_input_ids( |
|
input_ids, padding_idx, past_key_values_length=0 |
|
): |
|
""" |
|
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols |
|
are ignored. This is modified from fairseq's `utils.make_positions`. |
|
|
|
Args: |
|
x: torch.Tensor x: |
|
|
|
Returns: torch.Tensor |
|
""" |
|
|
|
mask = input_ids.ne(padding_idx).int() |
|
incremental_indices = ( |
|
torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length |
|
) * mask |
|
return incremental_indices.long() + padding_idx |
|
|
|
|
|
from dataclasses import asdict, dataclass |
|
from typing import Optional |
|
|
|
from transformers import PretrainedConfig, logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
ESM_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"facebook/esm-1b": "https://huggingface.co/facebook/esm-1b/resolve/main/config.json", |
|
|
|
} |
|
|
|
|
|
class NTConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`ESMModel`]. It is used to instantiate a ESM model |
|
according to the specified arguments, defining the model architecture. Instantiating a configuration with the |
|
defaults will yield a similar configuration to that of the ESM |
|
[facebook/esm-1b](https://huggingface.co/facebook/esm-1b) architecture. |
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
Args: |
|
vocab_size (`int`, *optional*): |
|
Vocabulary size of the ESM model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`ESMModel`]. |
|
mask_token_id (`int`, *optional*): |
|
The index of the mask token in the vocabulary. This must be included in the config because of the |
|
"mask-dropout" scaling trick, which will scale the inputs depending on the number of masked tokens. |
|
pad_token_id (`int`, *optional*): |
|
The index of the padding token in the vocabulary. This must be included in the config because certain parts |
|
of the ESM code use this instead of the attention mask. |
|
hidden_size (`int`, *optional*, defaults to 768): |
|
Dimensionality of the encoder layers and the pooler layer. |
|
num_hidden_layers (`int`, *optional*, defaults to 12): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 12): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
intermediate_size (`int`, *optional*, defaults to 3072): |
|
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. |
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.1): |
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. |
|
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): |
|
The dropout ratio for the attention probabilities. |
|
max_position_embeddings (`int`, *optional*, defaults to 1026): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-12): |
|
The epsilon used by the layer normalization layers. |
|
position_embedding_type (`str`, *optional*, defaults to `"absolute"`): |
|
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query", "rotary"`. |
|
For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to |
|
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). |
|
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models |
|
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). |
|
is_decoder (`bool`, *optional*, defaults to `False`): |
|
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
relevant if `config.is_decoder=True`. |
|
emb_layer_norm_before (`bool`, *optional*): |
|
Whether to apply layer normalization after embeddings but before the main stem of the network. |
|
token_dropout (`bool`, defaults to `False`): |
|
When this is enabled, masked tokens are treated as if they had been dropped out by input dropout. |
|
Examples: |
|
```python |
|
>>> from transformers import EsmModel, EsmConfig |
|
>>> # Initializing a ESM facebook/esm-1b style configuration >>> configuration = EsmConfig() |
|
>>> # Initializing a model from the configuration >>> model = ESMModel(configuration) |
|
>>> # Accessing the model configuration >>> configuration = model.config |
|
```""" |
|
model_type = "esm" |
|
|
|
def __init__( |
|
self, |
|
vocab_size=None, |
|
mask_token_id=None, |
|
pad_token_id=None, |
|
hidden_size=768, |
|
num_hidden_layers=12, |
|
num_attention_heads=12, |
|
intermediate_size=3072, |
|
hidden_dropout_prob=0.1, |
|
attention_probs_dropout_prob=0.1, |
|
max_position_embeddings=1026, |
|
initializer_range=0.02, |
|
layer_norm_eps=1e-12, |
|
position_embedding_type="absolute", |
|
use_cache=True, |
|
emb_layer_norm_before=None, |
|
token_dropout=False, |
|
is_folding_model=False, |
|
esmfold_config=None, |
|
vocab_list=None, |
|
add_bias_fnn=True, |
|
**kwargs, |
|
): |
|
super().__init__( |
|
pad_token_id=pad_token_id, mask_token_id=mask_token_id, **kwargs |
|
) |
|
|
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.intermediate_size = intermediate_size |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.max_position_embeddings = max_position_embeddings |
|
self.initializer_range = initializer_range |
|
self.layer_norm_eps = layer_norm_eps |
|
self.position_embedding_type = position_embedding_type |
|
self.use_cache = use_cache |
|
self.emb_layer_norm_before = emb_layer_norm_before |
|
self.token_dropout = token_dropout |
|
self.is_folding_model = is_folding_model |
|
|
|
|
|
self.add_bias_fnn = add_bias_fnn |
|
if is_folding_model: |
|
if esmfold_config is None: |
|
logger.info( |
|
"No esmfold_config supplied for folding model, using default values." |
|
) |
|
esmfold_config = EsmFoldConfig() |
|
elif isinstance(esmfold_config, dict): |
|
esmfold_config = EsmFoldConfig(**esmfold_config) |
|
self.esmfold_config = esmfold_config |
|
if vocab_list is None: |
|
logger.warning( |
|
"No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" |
|
) |
|
self.vocab_list = get_default_vocab_list() |
|
else: |
|
self.vocab_list = vocab_list |
|
else: |
|
self.esmfold_config = None |
|
self.vocab_list = None |
|
if self.esmfold_config is not None and getattr( |
|
self.esmfold_config, "use_esm_attn_map", False |
|
): |
|
raise ValueError( |
|
"The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" |
|
) |
|
|
|
def to_dict(self): |
|
""" |
|
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. |
|
Returns: |
|
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, |
|
""" |
|
output = super().to_dict() |
|
if isinstance(self.esmfold_config, EsmFoldConfig): |
|
output["esmfold_config"] = self.esmfold_config.to_dict() |
|
return output |
|
|
|
|
|
@dataclass |
|
class EsmFoldConfig: |
|
esm_type: str = None |
|
fp16_esm: bool = True |
|
use_esm_attn_map: bool = False |
|
esm_ablate_pairwise: bool = False |
|
esm_ablate_sequence: bool = False |
|
esm_input_dropout: float = 0 |
|
|
|
embed_aa: bool = True |
|
bypass_lm: bool = False |
|
|
|
lddt_head_hid_dim: int = 128 |
|
trunk: "TrunkConfig" = None |
|
|
|
def __post_init__(self): |
|
if self.trunk is None: |
|
self.trunk = TrunkConfig() |
|
elif isinstance(self.trunk, dict): |
|
self.trunk = TrunkConfig(**self.trunk) |
|
|
|
def to_dict(self): |
|
""" |
|
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. |
|
Returns: |
|
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, |
|
""" |
|
output = asdict(self) |
|
output["trunk"] = self.trunk.to_dict() |
|
return output |
|
|
|
|
|
@dataclass |
|
class TrunkConfig: |
|
num_blocks: int = 48 |
|
sequence_state_dim: int = 1024 |
|
pairwise_state_dim: int = 128 |
|
sequence_head_width: int = 32 |
|
pairwise_head_width: int = 32 |
|
position_bins: int = 32 |
|
dropout: float = 0 |
|
layer_drop: float = 0 |
|
cpu_grad_checkpoint: bool = False |
|
max_recycles: int = 4 |
|
chunk_size: Optional[int] = 128 |
|
structure_module: "StructureModuleConfig" = None |
|
|
|
def __post_init__(self): |
|
if self.structure_module is None: |
|
self.structure_module = StructureModuleConfig() |
|
elif isinstance(self.structure_module, dict): |
|
self.structure_module = StructureModuleConfig(**self.structure_module) |
|
|
|
if self.max_recycles <= 0: |
|
raise ValueError( |
|
f"`max_recycles` should be positive, got {self.max_recycles}." |
|
) |
|
if self.sequence_state_dim % self.sequence_state_dim != 0: |
|
raise ValueError( |
|
"`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" |
|
f" {self.sequence_state_dim} and {self.sequence_state_dim}." |
|
) |
|
if self.pairwise_state_dim % self.pairwise_state_dim != 0: |
|
raise ValueError( |
|
"`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" |
|
f" {self.pairwise_state_dim} and {self.pairwise_state_dim}." |
|
) |
|
|
|
sequence_num_heads = self.sequence_state_dim // self.sequence_head_width |
|
pairwise_num_heads = self.pairwise_state_dim // self.pairwise_head_width |
|
|
|
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: |
|
raise ValueError( |
|
"`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" |
|
f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." |
|
) |
|
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: |
|
raise ValueError( |
|
"`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" |
|
f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." |
|
) |
|
if self.pairwise_state_dim % 2 != 0: |
|
raise ValueError( |
|
f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." |
|
) |
|
|
|
if self.dropout >= 0.4: |
|
raise ValueError( |
|
f"`dropout` should not be greater than 0.4, got {self.dropout}." |
|
) |
|
|
|
def to_dict(self): |
|
""" |
|
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. |
|
Returns: |
|
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, |
|
""" |
|
output = asdict(self) |
|
output["structure_module"] = self.structure_module.to_dict() |
|
return output |
|
|
|
|
|
@dataclass |
|
class StructureModuleConfig: |
|
""" |
|
Args: |
|
sequence_dim: |
|
Single representation channel dimension |
|
pairwise_dim: |
|
Pair representation channel dimension |
|
ipa_dim: |
|
IPA hidden channel dimension |
|
resnet_dim: |
|
Angle resnet (Alg. 23 lines 11-14) hidden channel dimension |
|
num_heads_ipa: |
|
Number of IPA heads |
|
num_qk_points: |
|
Number of query/key points to generate during IPA |
|
num_v_points: |
|
Number of value points to generate during IPA |
|
dropout_rate: |
|
Dropout rate used throughout the layer |
|
num_blocks: |
|
Number of structure module blocks |
|
num_transition_layers: |
|
Number of layers in the single representation transition (Alg. 23 lines 8-9) |
|
num_resnet_blocks: |
|
Number of blocks in the angle resnet |
|
num_angles: |
|
Number of angles to generate in the angle resnet |
|
trans_scale_factor: |
|
Scale of single representation transition hidden dimension |
|
epsilon: |
|
Small number used in angle resnet normalization |
|
inf: |
|
Large number used for attention masking |
|
""" |
|
|
|
sequence_dim: int = 384 |
|
pairwise_dim: int = 128 |
|
ipa_dim: int = 16 |
|
resnet_dim: int = 128 |
|
num_heads_ipa: int = 12 |
|
num_qk_points: int = 4 |
|
num_v_points: int = 8 |
|
dropout_rate: float = 0.1 |
|
num_blocks: int = 8 |
|
num_transition_layers: int = 1 |
|
num_resnet_blocks: int = 2 |
|
num_angles: int = 7 |
|
trans_scale_factor: int = 10 |
|
epsilon: float = 1e-8 |
|
inf: float = 1e5 |
|
|
|
def to_dict(self): |
|
return asdict(self) |
|
|
|
|
|
def get_default_vocab_list(): |
|
return ( |
|
"<cls>", |
|
"<pad>", |
|
"<eos>", |
|
"<unk>", |
|
"L", |
|
"A", |
|
"G", |
|
"V", |
|
"S", |
|
"E", |
|
"R", |
|
"T", |
|
"I", |
|
"D", |
|
"P", |
|
"K", |
|
"Q", |
|
"N", |
|
"F", |
|
"Y", |
|
"M", |
|
"H", |
|
"W", |
|
"C", |
|
"X", |
|
"B", |
|
"U", |
|
"Z", |
|
"O", |
|
".", |
|
"-", |
|
"<null_1>", |
|
"<mask>", |
|
) |
|
|
|
|
|
def rotate_half(x): |
|
x1, x2 = x.chunk(2, dim=-1) |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(x, cos, sin): |
|
cos = cos[:, :, : x.shape[-2], :] |
|
sin = sin[:, :, : x.shape[-2], :] |
|
|
|
return (x * cos) + (rotate_half(x) * sin) |
|
|
|
|
|
def gelu(x): |
|
""" |
|
This is the gelu implementation from the original ESM repo. Using F.gelu yields subtly wrong results. |
|
""" |
|
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) |
|
|
|
|
|
def symmetrize(x): |
|
"Make layer symmetric in final two dimensions, used for contact prediction." |
|
return x + x.transpose(-1, -2) |
|
|
|
|
|
def average_product_correct(x): |
|
"Perform average product correct, used for contact prediction." |
|
a1 = x.sum(-1, keepdims=True) |
|
a2 = x.sum(-2, keepdims=True) |
|
a12 = x.sum((-1, -2), keepdims=True) |
|
|
|
avg = a1 * a2 |
|
avg.div_(a12) |
|
normalized = x - avg |
|
return normalized |
|
|
|
|
|
class RotaryEmbedding(torch.nn.Module): |
|
""" |
|
Rotary position embeddings based on those in |
|
[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer). Query and keys are transformed by rotation |
|
matrices which depend on their relative positions. |
|
""" |
|
|
|
def __init__(self, dim: int): |
|
super().__init__() |
|
|
|
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim)) |
|
inv_freq = inv_freq |
|
self.register_buffer("inv_freq", inv_freq) |
|
|
|
self._seq_len_cached = None |
|
self._cos_cached = None |
|
self._sin_cached = None |
|
|
|
def _update_cos_sin_tables(self, x, seq_dimension=2): |
|
seq_len = x.shape[seq_dimension] |
|
|
|
|
|
|
|
if seq_len != self._seq_len_cached or self._cos_cached.device != x.device: |
|
self._seq_len_cached = seq_len |
|
t = torch.arange(x.shape[seq_dimension], device=x.device).type_as( |
|
self.inv_freq |
|
) |
|
freqs = torch.outer(t, self.inv_freq) |
|
emb = torch.cat((freqs, freqs), dim=-1).to(x.device) |
|
|
|
self._cos_cached = emb.cos()[None, None, :, :] |
|
self._sin_cached = emb.sin()[None, None, :, :] |
|
|
|
return self._cos_cached, self._sin_cached |
|
|
|
def forward( |
|
self, q: torch.Tensor, k: torch.Tensor |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
self._cos_cached, self._sin_cached = self._update_cos_sin_tables( |
|
k, seq_dimension=-2 |
|
) |
|
|
|
return ( |
|
apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached), |
|
apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached), |
|
) |
|
|
|
|
|
class EsmContactPredictionHead(nn.Module): |
|
"""Performs symmetrization, apc, and computes a logistic regression on the output features""" |
|
|
|
def __init__( |
|
self, |
|
in_features: int, |
|
bias=True, |
|
eos_idx: int = 2, |
|
): |
|
super().__init__() |
|
self.in_features = in_features |
|
self.eos_idx = eos_idx |
|
self.regression = nn.Linear(in_features, 1, bias) |
|
self.activation = nn.Sigmoid() |
|
|
|
def forward(self, tokens, attentions): |
|
|
|
eos_mask = tokens.ne(self.eos_idx).to(attentions) |
|
eos_mask = eos_mask.unsqueeze(1) * eos_mask.unsqueeze(2) |
|
attentions = attentions * eos_mask[:, None, None, :, :] |
|
attentions = attentions[..., :-1, :-1] |
|
|
|
attentions = attentions[..., 1:, 1:] |
|
batch_size, layers, heads, seqlen, _ = attentions.size() |
|
attentions = attentions.view(batch_size, layers * heads, seqlen, seqlen) |
|
|
|
|
|
attentions = attentions.to( |
|
self.regression.weight.device |
|
) |
|
attentions = average_product_correct(symmetrize(attentions)) |
|
attentions = attentions.permute(0, 2, 3, 1) |
|
return self.activation(self.regression(attentions).squeeze(3)) |
|
|
|
|
|
class EsmEmbeddings(nn.Module): |
|
""" |
|
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. |
|
""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.word_embeddings = nn.Embedding( |
|
config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id |
|
) |
|
|
|
if config.emb_layer_norm_before: |
|
self.layer_norm = nn.LayerNorm( |
|
config.hidden_size, eps=config.layer_norm_eps |
|
) |
|
else: |
|
self.layer_norm = None |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
self.position_embedding_type = getattr( |
|
config, "position_embedding_type", "absolute" |
|
) |
|
self.register_buffer( |
|
"position_ids", |
|
torch.arange(config.max_position_embeddings).expand((1, -1)), |
|
persistent=False, |
|
) |
|
|
|
self.padding_idx = config.pad_token_id |
|
self.position_embeddings = nn.Embedding( |
|
config.max_position_embeddings, |
|
config.hidden_size, |
|
padding_idx=self.padding_idx, |
|
) |
|
self.token_dropout = config.token_dropout |
|
self.mask_token_id = config.mask_token_id |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
position_ids=None, |
|
inputs_embeds=None, |
|
past_key_values_length=0, |
|
): |
|
if position_ids is None: |
|
if input_ids is not None: |
|
|
|
position_ids = create_position_ids_from_input_ids( |
|
input_ids, self.padding_idx, past_key_values_length |
|
) |
|
else: |
|
position_ids = self.create_position_ids_from_inputs_embeds( |
|
inputs_embeds |
|
) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.word_embeddings(input_ids) |
|
|
|
|
|
|
|
embeddings = inputs_embeds |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.token_dropout: |
|
embeddings.masked_fill_( |
|
(input_ids == self.mask_token_id).unsqueeze(-1), 0.0 |
|
) |
|
mask_ratio_train = ( |
|
0.15 * 0.8 |
|
) |
|
src_lengths = attention_mask.sum(-1) |
|
mask_ratio_observed = (input_ids == self.mask_token_id).sum( |
|
-1 |
|
).float() / src_lengths |
|
embeddings = ( |
|
embeddings |
|
* (1 - mask_ratio_train) |
|
/ (1 - mask_ratio_observed)[:, None, None] |
|
).to(embeddings.dtype) |
|
|
|
if self.position_embedding_type == "absolute": |
|
position_embeddings = self.position_embeddings(position_ids) |
|
embeddings += position_embeddings |
|
|
|
if self.layer_norm is not None: |
|
embeddings = self.layer_norm(embeddings) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return embeddings |
|
|
|
def create_position_ids_from_inputs_embeds(self, inputs_embeds): |
|
""" |
|
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. |
|
Args: |
|
inputs_embeds: torch.Tensor |
|
Returns: torch.Tensor |
|
""" |
|
input_shape = inputs_embeds.size()[:-1] |
|
sequence_length = input_shape[1] |
|
|
|
position_ids = torch.arange( |
|
self.padding_idx + 1, |
|
sequence_length + self.padding_idx + 1, |
|
dtype=torch.long, |
|
device=inputs_embeds.device, |
|
) |
|
return position_ids.unsqueeze(0).expand(input_shape) |
|
|
|
|
|
class EsmSelfAttention(nn.Module): |
|
def __init__(self, config, position_embedding_type=None): |
|
super().__init__() |
|
if config.hidden_size % config.num_attention_heads != 0 and not hasattr( |
|
config, "embedding_size" |
|
): |
|
raise ValueError( |
|
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " |
|
f"heads ({config.num_attention_heads})" |
|
) |
|
|
|
self.num_attention_heads = config.num_attention_heads |
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) |
|
self.all_head_size = self.num_attention_heads * self.attention_head_size |
|
|
|
self.query = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.key = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.value = nn.Linear(config.hidden_size, self.all_head_size) |
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|
self.position_embedding_type = position_embedding_type or getattr( |
|
config, "position_embedding_type", "absolute" |
|
) |
|
self.rotary_embeddings = None |
|
if ( |
|
self.position_embedding_type == "relative_key" |
|
or self.position_embedding_type == "relative_key_query" |
|
): |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.distance_embedding = nn.Embedding( |
|
2 * config.max_position_embeddings - 1, self.attention_head_size |
|
) |
|
elif self.position_embedding_type == "rotary": |
|
self.rotary_embeddings = RotaryEmbedding(dim=self.attention_head_size) |
|
|
|
self.is_decoder = config.is_decoder |
|
|
|
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: |
|
new_x_shape = x.size()[:-1] + ( |
|
self.num_attention_heads, |
|
self.attention_head_size, |
|
) |
|
x = x.view(new_x_shape) |
|
return x.permute(0, 2, 1, 3) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor]: |
|
mixed_query_layer = self.query(hidden_states) |
|
|
|
|
|
|
|
|
|
is_cross_attention = encoder_hidden_states is not None |
|
|
|
if is_cross_attention and past_key_value is not None: |
|
|
|
key_layer = past_key_value[0] |
|
value_layer = past_key_value[1] |
|
attention_mask = encoder_attention_mask |
|
elif is_cross_attention: |
|
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) |
|
attention_mask = encoder_attention_mask |
|
elif past_key_value is not None: |
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
key_layer = torch.cat([past_key_value[0], key_layer], dim=2) |
|
value_layer = torch.cat([past_key_value[1], value_layer], dim=2) |
|
else: |
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
|
|
query_layer = self.transpose_for_scores(mixed_query_layer) |
|
|
|
|
|
|
|
|
|
|
|
query_layer = query_layer * self.attention_head_size**-0.5 |
|
|
|
if self.is_decoder: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
past_key_value = (key_layer, value_layer) |
|
|
|
if self.position_embedding_type == "rotary": |
|
query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer) |
|
|
|
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) |
|
|
|
if ( |
|
self.position_embedding_type == "relative_key" |
|
or self.position_embedding_type == "relative_key_query" |
|
): |
|
seq_length = hidden_states.size()[1] |
|
position_ids_l = torch.arange( |
|
seq_length, dtype=torch.long, device=hidden_states.device |
|
).view(-1, 1) |
|
position_ids_r = torch.arange( |
|
seq_length, dtype=torch.long, device=hidden_states.device |
|
).view(1, -1) |
|
distance = position_ids_l - position_ids_r |
|
positional_embedding = self.distance_embedding( |
|
distance + self.max_position_embeddings - 1 |
|
) |
|
positional_embedding = positional_embedding.to( |
|
dtype=query_layer.dtype |
|
) |
|
|
|
if self.position_embedding_type == "relative_key": |
|
relative_position_scores = torch.einsum( |
|
"bhld,lrd->bhlr", query_layer, positional_embedding |
|
) |
|
attention_scores = attention_scores + relative_position_scores |
|
elif self.position_embedding_type == "relative_key_query": |
|
relative_position_scores_query = torch.einsum( |
|
"bhld,lrd->bhlr", query_layer, positional_embedding |
|
) |
|
relative_position_scores_key = torch.einsum( |
|
"bhrd,lrd->bhlr", key_layer, positional_embedding |
|
) |
|
attention_scores = ( |
|
attention_scores |
|
+ relative_position_scores_query |
|
+ relative_position_scores_key |
|
) |
|
|
|
if attention_mask is not None: |
|
attention_scores = attention_scores + attention_mask |
|
|
|
|
|
attention_probs = nn.functional.softmax(attention_scores, dim=-1) |
|
attention_mask_widened = attention_mask.repeat( |
|
attention_probs.shape[0], |
|
attention_probs.shape[1], |
|
attention_probs.shape[2], |
|
1 |
|
).permute(0,1,3,2) == 0 |
|
attention_probs = torch.where(attention_mask_widened, attention_probs, 0.00097656) |
|
|
|
|
|
|
|
|
|
attention_probs = self.dropout(attention_probs) |
|
|
|
|
|
if head_mask is not None: |
|
attention_probs = attention_probs * head_mask |
|
|
|
context_layer = torch.matmul(attention_probs, value_layer) |
|
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() |
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) |
|
context_layer = context_layer.view(new_context_layer_shape) |
|
|
|
outputs = ( |
|
(context_layer, attention_probs) if output_attentions else (context_layer,) |
|
) |
|
|
|
if self.is_decoder: |
|
outputs = outputs + (past_key_value,) |
|
return outputs |
|
|
|
|
|
class EsmSelfOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states, input_tensor): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states += input_tensor |
|
return hidden_states |
|
|
|
|
|
class EsmAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.self = EsmSelfAttention(config) |
|
self.output = EsmSelfOutput(config) |
|
self.pruned_heads = set() |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
def prune_heads(self, heads): |
|
if len(heads) == 0: |
|
return |
|
heads, index = find_pruneable_heads_and_indices( |
|
heads, |
|
self.self.num_attention_heads, |
|
self.self.attention_head_size, |
|
self.pruned_heads, |
|
) |
|
|
|
|
|
self.self.query = prune_linear_layer(self.self.query, index) |
|
self.self.key = prune_linear_layer(self.self.key, index) |
|
self.self.value = prune_linear_layer(self.self.value, index) |
|
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) |
|
|
|
|
|
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) |
|
self.self.all_head_size = ( |
|
self.self.attention_head_size * self.self.num_attention_heads |
|
) |
|
self.pruned_heads = self.pruned_heads.union(heads) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
past_key_value=None, |
|
output_attentions=False, |
|
): |
|
hidden_states_ln = self.LayerNorm(hidden_states) |
|
self_outputs = self.self( |
|
hidden_states_ln, |
|
attention_mask, |
|
head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
past_key_value, |
|
output_attentions, |
|
) |
|
attention_output = self.output(self_outputs[0], hidden_states) |
|
outputs = (attention_output,) + self_outputs[ |
|
1: |
|
] |
|
return outputs |
|
|
|
|
|
class MultiHeadAttention(nn.Module): |
|
def __init__(self, config, omics_of_interest_size: int, other_omic_size: int, position_embedding_type=None): |
|
super().__init__() |
|
if config.hidden_size % config.num_attention_heads != 0 and not hasattr( |
|
config, "embedding_size" |
|
): |
|
raise ValueError( |
|
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " |
|
f"heads ({config.num_attention_heads})" |
|
) |
|
|
|
self.num_attention_heads = config.num_attention_heads |
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) |
|
self.all_head_size = self.num_attention_heads * self.attention_head_size |
|
|
|
self.query = nn.Linear(omics_of_interest_size, omics_of_interest_size) |
|
|
|
self.key = nn.Linear(other_omic_size, omics_of_interest_size) |
|
|
|
self.value = nn.Linear(other_omic_size, omics_of_interest_size) |
|
|
|
self.dense = nn.Linear(omics_of_interest_size, omics_of_interest_size) |
|
|
|
|
|
|
|
self.position_embedding_type = position_embedding_type or getattr( |
|
config, "position_embedding_type", "absolute" |
|
) |
|
self.rotary_embeddings = None |
|
if ( |
|
self.position_embedding_type == "relative_key" |
|
or self.position_embedding_type == "relative_key_query" |
|
): |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.distance_embedding = nn.Embedding( |
|
2 * config.max_position_embeddings - 1, self.attention_head_size |
|
) |
|
elif self.position_embedding_type == "rotary": |
|
self.rotary_embeddings = RotaryEmbedding(dim=self.attention_head_size) |
|
|
|
self.is_decoder = config.is_decoder |
|
|
|
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: |
|
new_x_shape = x.size()[:-1] + ( |
|
self.num_attention_heads, |
|
self.attention_head_size, |
|
) |
|
x = x.view(new_x_shape) |
|
return x.permute(0, 2, 1, 3) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
output_attentions: Optional[bool] = False, |
|
) -> Dict[str, torch.Tensor]: |
|
mixed_query_layer = self.query(hidden_states) |
|
|
|
|
|
|
|
|
|
is_cross_attention = encoder_hidden_states is not None |
|
|
|
if is_cross_attention and past_key_value is not None: |
|
|
|
key_layer = past_key_value[0] |
|
value_layer = past_key_value[1] |
|
attention_mask = encoder_attention_mask |
|
elif is_cross_attention: |
|
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) |
|
attention_mask = encoder_attention_mask |
|
elif past_key_value is not None: |
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
key_layer = torch.cat([past_key_value[0], key_layer], dim=2) |
|
value_layer = torch.cat([past_key_value[1], value_layer], dim=2) |
|
else: |
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
|
|
query_layer = self.transpose_for_scores(mixed_query_layer) |
|
|
|
|
|
|
|
|
|
|
|
query_layer = query_layer * self.attention_head_size**-0.5 |
|
|
|
if self.is_decoder: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
past_key_value = (key_layer, value_layer) |
|
|
|
if self.position_embedding_type == "rotary": |
|
query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer) |
|
|
|
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) |
|
|
|
if ( |
|
self.position_embedding_type == "relative_key" |
|
or self.position_embedding_type == "relative_key_query" |
|
): |
|
seq_length = hidden_states.size()[1] |
|
position_ids_l = torch.arange( |
|
seq_length, dtype=torch.long, device=hidden_states.device |
|
).view(-1, 1) |
|
position_ids_r = torch.arange( |
|
seq_length, dtype=torch.long, device=hidden_states.device |
|
).view(1, -1) |
|
distance = position_ids_l - position_ids_r |
|
positional_embedding = self.distance_embedding( |
|
distance + self.max_position_embeddings - 1 |
|
) |
|
positional_embedding = positional_embedding.to( |
|
dtype=query_layer.dtype |
|
) |
|
|
|
if self.position_embedding_type == "relative_key": |
|
relative_position_scores = torch.einsum( |
|
"bhld,lrd->bhlr", query_layer, positional_embedding |
|
) |
|
attention_scores = attention_scores + relative_position_scores |
|
elif self.position_embedding_type == "relative_key_query": |
|
relative_position_scores_query = torch.einsum( |
|
"bhld,lrd->bhlr", query_layer, positional_embedding |
|
) |
|
relative_position_scores_key = torch.einsum( |
|
"bhrd,lrd->bhlr", key_layer, positional_embedding |
|
) |
|
attention_scores = ( |
|
attention_scores |
|
+ relative_position_scores_query |
|
+ relative_position_scores_key |
|
) |
|
|
|
if attention_mask is not None: |
|
|
|
|
|
attention_scores = torch.where(attention_mask, attention_scores, -1e30) |
|
|
|
|
|
|
|
attention_probs = nn.functional.softmax(attention_scores, dim=-1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if head_mask is not None: |
|
attention_probs = attention_probs * head_mask |
|
|
|
context_layer = torch.matmul(attention_probs, value_layer) |
|
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() |
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) |
|
context_layer = context_layer.view(new_context_layer_shape) |
|
|
|
outputs = ( |
|
(context_layer, attention_probs) if output_attentions else (context_layer,) |
|
) |
|
|
|
if self.is_decoder: |
|
outputs = outputs + (past_key_value,) |
|
return { |
|
"embeddings": self.dense(context_layer) + hidden_states, |
|
"query_heads": self.transpose_for_scores(mixed_query_layer), |
|
"value_heads": self.transpose_for_scores(self.value(encoder_hidden_states)), |
|
"key_heads": self.transpose_for_scores(self.key(encoder_hidden_states)), |
|
"attention_probs": attention_probs, |
|
"attention_scores": attention_scores, |
|
"context_layer": context_layer, |
|
} |
|
|
|
class EsmIntermediate(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear( |
|
config.hidden_size, |
|
int(config.intermediate_size * 2), |
|
bias=config.add_bias_fnn, |
|
) |
|
self.activation_fn = SiLU() |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
|
|
|
|
x1, x2 = hidden_states.split(int(hidden_states.size(-1) / 2), -1) |
|
hidden_states = self.activation_fn(x1) * x2 |
|
|
|
return hidden_states |
|
|
|
|
|
class EsmOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear( |
|
config.intermediate_size, config.hidden_size, bias=config.add_bias_fnn |
|
) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states, input_tensor): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states += input_tensor |
|
return hidden_states |
|
|
|
|
|
class EsmLayer(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward |
|
self.seq_len_dim = 1 |
|
self.attention = EsmAttention(config) |
|
self.is_decoder = config.is_decoder |
|
self.add_cross_attention = config.add_cross_attention |
|
if self.add_cross_attention: |
|
if not self.is_decoder: |
|
raise RuntimeError( |
|
f"{self} should be used as a decoder model if cross attention is added" |
|
) |
|
self.crossattention = EsmAttention(config) |
|
self.intermediate = EsmIntermediate(config) |
|
self.output = EsmOutput(config) |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
past_key_value=None, |
|
output_attentions=False, |
|
): |
|
|
|
self_attn_past_key_value = ( |
|
past_key_value[:2] if past_key_value is not None else None |
|
) |
|
self_attention_outputs = self.attention( |
|
hidden_states, |
|
attention_mask, |
|
head_mask, |
|
output_attentions=output_attentions, |
|
past_key_value=self_attn_past_key_value, |
|
) |
|
attention_output = self_attention_outputs[0] |
|
|
|
|
|
if self.is_decoder: |
|
outputs = self_attention_outputs[1:-1] |
|
present_key_value = self_attention_outputs[-1] |
|
else: |
|
outputs = self_attention_outputs[ |
|
1: |
|
] |
|
|
|
cross_attn_present_key_value = None |
|
if self.is_decoder and encoder_hidden_states is not None: |
|
if not hasattr(self, "crossattention"): |
|
raise AttributeError( |
|
f"If `encoder_hidden_states` are passed, {self} has to be instantiated" |
|
" with cross-attention layers by setting `config.add_cross_attention=True`" |
|
) |
|
|
|
|
|
cross_attn_past_key_value = ( |
|
past_key_value[-2:] if past_key_value is not None else None |
|
) |
|
cross_attention_outputs = self.crossattention( |
|
attention_output, |
|
attention_mask, |
|
head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
cross_attn_past_key_value, |
|
output_attentions, |
|
) |
|
attention_output = cross_attention_outputs[0] |
|
outputs = ( |
|
outputs + cross_attention_outputs[1:-1] |
|
) |
|
|
|
|
|
cross_attn_present_key_value = cross_attention_outputs[-1] |
|
present_key_value = present_key_value + cross_attn_present_key_value |
|
|
|
layer_output = self.feed_forward_chunk(attention_output) |
|
|
|
outputs = (layer_output,) + outputs |
|
|
|
|
|
if self.is_decoder: |
|
outputs = outputs + (present_key_value,) |
|
return outputs |
|
|
|
def feed_forward_chunk(self, attention_output): |
|
attention_output_ln = self.LayerNorm(attention_output) |
|
intermediate_output = self.intermediate(attention_output_ln) |
|
layer_output = self.output(intermediate_output, attention_output) |
|
return layer_output |
|
|
|
|
|
class EsmEncoder(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.layer = nn.ModuleList( |
|
[EsmLayer(config) for _ in range(config.num_hidden_layers)] |
|
) |
|
self.emb_layer_norm_after = nn.LayerNorm( |
|
config.hidden_size, eps=config.layer_norm_eps |
|
) |
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
past_key_values=None, |
|
use_cache=None, |
|
output_attentions=False, |
|
output_hidden_states=False, |
|
return_dict=True, |
|
): |
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting " |
|
"`use_cache=False`..." |
|
) |
|
use_cache = False |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attentions = () if output_attentions else None |
|
all_cross_attentions = ( |
|
() if output_attentions and self.config.add_cross_attention else None |
|
) |
|
|
|
next_decoder_cache = () if use_cache else None |
|
for i, layer_module in enumerate(self.layer): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
layer_head_mask = head_mask[i] if head_mask is not None else None |
|
past_key_value = past_key_values[i] if past_key_values is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs, past_key_value, output_attentions) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(layer_module), |
|
hidden_states, |
|
attention_mask, |
|
layer_head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
) |
|
else: |
|
layer_outputs = layer_module( |
|
hidden_states, |
|
attention_mask, |
|
layer_head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
past_key_value, |
|
output_attentions, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[-1],) |
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (layer_outputs[1],) |
|
if self.config.add_cross_attention: |
|
all_cross_attentions = all_cross_attentions + (layer_outputs[2],) |
|
|
|
if self.emb_layer_norm_after: |
|
hidden_states = self.emb_layer_norm_after(hidden_states) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
next_decoder_cache, |
|
all_hidden_states, |
|
all_self_attentions, |
|
all_cross_attentions, |
|
] |
|
if v is not None |
|
) |
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_decoder_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
cross_attentions=all_cross_attentions, |
|
) |
|
|
|
|
|
|
|
class EsmPooler(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.activation = nn.Tanh() |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
|
|
|
|
first_token_tensor = hidden_states[:, 0] |
|
pooled_output = self.dense(first_token_tensor) |
|
pooled_output = self.activation(pooled_output) |
|
return pooled_output |
|
|
|
|
|
class EsmPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = NTConfig |
|
base_model_prefix = "esm" |
|
_no_split_modules = ["EsmLayer", "EsmFoldTriangularSelfAttentionBlock"] |
|
|
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
if isinstance(module, nn.Linear): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
|
|
ESM_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
Parameters: |
|
config ([`NTConfig`]): Model configuration class with all the parameters of the |
|
model. Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
ESM_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `({0})`): |
|
Indices of input sequence tokens in the vocabulary. |
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
[What are attention masks?](../glossary#attention-mask) |
|
position_ids (`torch.LongTensor` of shape `({0})`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.max_position_embeddings - 1]`. |
|
[What are position IDs?](../glossary#position-ids) |
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): |
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: |
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare ESM Model transformer outputting raw hidden-states without any specific head on top.", |
|
ESM_START_DOCSTRING, |
|
) |
|
class NTModel(EsmPreTrainedModel): |
|
""" |
|
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of |
|
cross-attention is added between the self-attention layers, following the architecture described in [Attention is |
|
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, |
|
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. |
|
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set |
|
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and |
|
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. |
|
""" |
|
|
|
supports_gradient_checkpointing = False |
|
|
|
def __init__(self, config, add_pooling_layer=True): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.embeddings = EsmEmbeddings(config) |
|
self.encoder = EsmEncoder(config) |
|
|
|
self.pooler = EsmPooler(config) if add_pooling_layer else None |
|
|
|
self.contact_head = EsmContactPredictionHead( |
|
in_features=config.num_hidden_layers * config.num_attention_heads, bias=True |
|
) |
|
|
|
|
|
self.post_init() |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, EsmEncoder): |
|
module.gradient_checkpointing = value |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings.word_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.embeddings.word_embeddings = value |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.layer[layer].attention.prune_heads(heads) |
|
|
|
@add_start_docstrings_to_model_forward( |
|
ESM_INPUTS_DOCSTRING.format("(batch_size, sequence_length)") |
|
) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=BaseModelOutputWithPoolingAndCrossAttentions, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: |
|
r""" |
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if |
|
the model is configured as a decoder. |
|
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in |
|
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: |
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): |
|
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. |
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
""" |
|
output_attentions = ( |
|
output_attentions |
|
if output_attentions is not None |
|
else self.config.output_attentions |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states |
|
if output_hidden_states is not None |
|
else self.config.output_hidden_states |
|
) |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
if self.config.is_decoder: |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
else: |
|
use_cache = False |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError( |
|
"You cannot specify both input_ids and inputs_embeds at the same time" |
|
) |
|
elif input_ids is not None: |
|
input_shape = input_ids.size() |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
batch_size, seq_length = input_shape |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
|
|
|
|
past_key_values_length = ( |
|
past_key_values[0][0].shape[2] if past_key_values is not None else 0 |
|
) |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones( |
|
((batch_size, seq_length + past_key_values_length)), device=device |
|
) |
|
|
|
|
|
|
|
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask( |
|
attention_mask, input_shape |
|
) |
|
|
|
|
|
|
|
if self.config.is_decoder and encoder_hidden_states is not None: |
|
( |
|
encoder_batch_size, |
|
encoder_sequence_length, |
|
_, |
|
) = encoder_hidden_states.size() |
|
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) |
|
if encoder_attention_mask is None: |
|
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) |
|
encoder_extended_attention_mask = self.invert_attention_mask( |
|
encoder_attention_mask |
|
) |
|
else: |
|
encoder_extended_attention_mask = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) |
|
|
|
embedding_output = self.embeddings( |
|
input_ids=input_ids, |
|
position_ids=position_ids, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
encoder_outputs = self.encoder( |
|
embedding_output, |
|
attention_mask=extended_attention_mask, |
|
head_mask=head_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_extended_attention_mask, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = encoder_outputs[0] |
|
pooled_output = ( |
|
self.pooler(sequence_output) if self.pooler is not None else None |
|
) |
|
|
|
if not return_dict: |
|
return (sequence_output, pooled_output) + encoder_outputs[1:] |
|
|
|
return BaseModelOutputWithPoolingAndCrossAttentions( |
|
last_hidden_state=sequence_output, |
|
pooler_output=pooled_output, |
|
past_key_values=encoder_outputs.past_key_values, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
cross_attentions=encoder_outputs.cross_attentions, |
|
) |
|
|
|
def predict_contacts(self, tokens, attention_mask): |
|
attns = self( |
|
tokens, |
|
attention_mask=attention_mask, |
|
return_dict=True, |
|
output_attentions=True, |
|
).attentions |
|
attns = torch.stack(attns, dim=1) |
|
|
|
|
|
|
|
|
|
attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(3) |
|
attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(4) |
|
return self.contact_head(tokens, attns) |
|
|
|
|
|
@add_start_docstrings( |
|
"""ESM Model with a `language modeling` head on top.""", ESM_START_DOCSTRING |
|
) |
|
class NTForMaskedLM(EsmPreTrainedModel): |
|
_tied_weights_keys = ["lm_head.decoder.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
if config.is_decoder: |
|
logger.warning( |
|
"If you want to use `EsmForMaskedLM` make sure `config.is_decoder=False` for " |
|
"bi-directional self-attention." |
|
) |
|
|
|
self.esm = NTModel(config, add_pooling_layer=False) |
|
self.lm_head = EsmLMHead(config) |
|
|
|
self.init_weights() |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head.decoder |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head.decoder = new_embeddings |
|
|
|
@add_start_docstrings_to_model_forward( |
|
ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length") |
|
) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=MaskedLMOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
mask="<mask>", |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, MaskedLMOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., |
|
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the |
|
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` |
|
kwargs (`Dict[str, any]`, optional, defaults to *{}*): |
|
Used to hide legacy arguments that have been deprecated. |
|
""" |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
outputs = self.esm( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = outputs[0] |
|
prediction_scores = self.lm_head(sequence_output) |
|
|
|
masked_lm_loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
|
|
labels = labels.to(prediction_scores.device) |
|
masked_lm_loss = loss_fct( |
|
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1) |
|
) |
|
|
|
if not return_dict: |
|
output = (prediction_scores,) + outputs[2:] |
|
return ( |
|
((masked_lm_loss,) + output) if masked_lm_loss is not None else output |
|
) |
|
|
|
return MaskedLMOutput( |
|
loss=masked_lm_loss, |
|
logits=prediction_scores, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def predict_contacts(self, tokens, attention_mask): |
|
return self.esm.predict_contacts(tokens, attention_mask=attention_mask) |
|
|
|
|
|
class EsmLMHead(nn.Module): |
|
"""ESM Head for masked language modeling.""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) |
|
|
|
def forward(self, features, **kwargs): |
|
x = self.dense(features) |
|
x = gelu(x) |
|
x = self.layer_norm(x) |
|
|
|
|
|
x = self.decoder(x) + self.bias |
|
return x |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
ESM Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled |
|
output) e.g. for GLUE tasks. |
|
""", |
|
ESM_START_DOCSTRING, |
|
) |
|
class EsmForSequenceClassification(EsmPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.config = config |
|
|
|
self.esm = NTModel(config, add_pooling_layer=False) |
|
self.classifier = EsmClassificationHead(config) |
|
|
|
self.init_weights() |
|
|
|
@add_start_docstrings_to_model_forward( |
|
ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length") |
|
) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=SequenceClassifierOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, SequenceClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
outputs = self.esm( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = outputs[0] |
|
logits = self.classifier(sequence_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
labels = labels.to(logits.device) |
|
|
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and ( |
|
labels.dtype == torch.long or labels.dtype == torch.int |
|
): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(logits, labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
ESM Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for |
|
Named-Entity-Recognition (NER) tasks. |
|
""", |
|
ESM_START_DOCSTRING, |
|
) |
|
class EsmForTokenClassification(EsmPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
|
|
self.esm = NTModel(config, add_pooling_layer=False) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
self.init_weights() |
|
|
|
@add_start_docstrings_to_model_forward( |
|
ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length") |
|
) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=TokenClassifierOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, TokenClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. |
|
""" |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
outputs = self.esm( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
|
|
sequence_output = self.dropout(sequence_output) |
|
logits = self.classifier(sequence_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
|
|
labels = labels.to(logits.device) |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return TokenClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
class EsmClassificationHead(nn.Module): |
|
"""Head for sentence-level classification tasks.""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
self.out_proj = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
def forward(self, features, **kwargs): |
|
x = features[:, 0, :] |
|
x = self.dropout(x) |
|
x = self.dense(x) |
|
x = torch.tanh(x) |
|
x = self.dropout(x) |
|
x = self.out_proj(x) |
|
return x |
|
|
|
|
|
def create_position_ids_from_input_ids( |
|
input_ids, padding_idx, past_key_values_length=0 |
|
): |
|
""" |
|
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols |
|
are ignored. This is modified from fairseq's `utils.make_positions`. |
|
Args: |
|
x: torch.Tensor x: |
|
Returns: torch.Tensor |
|
""" |
|
|
|
mask = input_ids.ne(padding_idx).int() |
|
incremental_indices = ( |
|
torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length |
|
) * mask |
|
return incremental_indices.long() + padding_idx |
|
|
|
|
|
class Isoformer(PreTrainedModel): |
|
config_class = IsoformerConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
|
|
self.esm_config = EsmConfig( |
|
vocab_size=config.esm_vocab_size, |
|
mask_token_id=config.esm_mask_token_id, |
|
pad_token_id=config.esm_pad_token_id, |
|
hidden_size=config.esm_hidden_size, |
|
num_hidden_layers=config.esm_num_hidden_layers, |
|
num_attention_heads=config.esm_num_attention_heads, |
|
intermediate_size=config.esm_intermediate_size, |
|
max_position_embeddings=config.esm_max_position_embeddings, |
|
token_dropout=config.esm_token_dropout, |
|
emb_layer_norm_before=config.esm_emb_layer_norm_before, |
|
attention_probs_dropout_prob=0.0, |
|
hidden_dropout_prob=0.0, |
|
use_cache=False, |
|
add_bias_fnn=config.esm_add_bias_fnn, |
|
position_embedding_type="rotary", |
|
tie_word_embeddings=False, |
|
) |
|
|
|
self.nt_config = NTConfig( |
|
vocab_size=config.nt_vocab_size, |
|
mask_token_id=config.nt_mask_token_id, |
|
pad_token_id=config.nt_pad_token_id, |
|
hidden_size=config.nt_hidden_size, |
|
num_hidden_layers=config.nt_num_hidden_layers, |
|
num_attention_heads=config.nt_num_attention_heads, |
|
intermediate_size=config.nt_intermediate_size, |
|
max_position_embeddings=config.nt_max_position_embeddings, |
|
token_dropout=config.nt_token_dropout, |
|
emb_layer_norm_before=config.nt_emb_layer_norm_before, |
|
attention_probs_dropout_prob=0.0, |
|
hidden_dropout_prob=0.0, |
|
use_cache=False, |
|
add_bias_fnn=config.nt_add_bias_fnn, |
|
position_embedding_type="rotary", |
|
tie_word_embeddings=False, |
|
) |
|
self.config = config |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.esm_model = EsmForMaskedLM(self.esm_config) |
|
self.nt_model = NTForMaskedLM(self.nt_config) |
|
|
|
self.enformer_model = Enformer.from_pretrained("EleutherAI/enformer-official-rough") |
|
|
|
self.cross_attention_layer_rna = MultiHeadAttention( |
|
config=EsmConfig( |
|
num_attention_heads=config.num_heads_omics_cross_attention, |
|
attention_head_size=3072 // config.num_heads_omics_cross_attention, |
|
hidden_size=3072, |
|
attention_probs_dropout_prob=0, |
|
max_position_embeddings=0 |
|
), |
|
omics_of_interest_size=3072, |
|
other_omic_size=768 |
|
) |
|
self.cross_attention_layer_protein = MultiHeadAttention( |
|
config=EsmConfig( |
|
num_attention_heads=config.num_heads_omics_cross_attention, |
|
attention_head_size=3072 // config.num_heads_omics_cross_attention, |
|
hidden_size=3072, |
|
attention_probs_dropout_prob=0, |
|
max_position_embeddings=0 |
|
), |
|
omics_of_interest_size=3072, |
|
other_omic_size=640 |
|
) |
|
|
|
self.head_layer_1 = nn.Linear(3072, 2 * 3072) |
|
self.head_layer_2 = nn.Linear(2 * 3072, 30) |
|
|
|
def forward( |
|
self, |
|
tensor_dna, |
|
tensor_rna, |
|
tensor_protein, |
|
attention_mask_rna, |
|
attention_mask_protein |
|
): |
|
tensor_dna = tensor_dna[:, 1:] |
|
dna_embedding = self.enformer_model( |
|
tensor_dna, |
|
return_only_embeddings=True |
|
|
|
|
|
|
|
) |
|
protein_embedding = self.esm_model( |
|
tensor_protein, |
|
attention_mask=attention_mask_protein, |
|
encoder_attention_mask=attention_mask_protein, |
|
output_hidden_states=True |
|
) |
|
rna_embedding = self.nt_model( |
|
tensor_rna, |
|
attention_mask=attention_mask_rna, |
|
encoder_attention_mask=attention_mask_rna, |
|
output_hidden_states=True |
|
) |
|
|
|
encoder_attention_mask = torch.unsqueeze(torch.unsqueeze(tensor_rna != 1, 0),0).repeat(1,1,dna_embedding.shape[1],1) |
|
rna_to_dna = self.cross_attention_layer_rna.forward( |
|
hidden_states=dna_embedding, |
|
encoder_hidden_states=rna_embedding["hidden_states"][-1], |
|
encoder_attention_mask=encoder_attention_mask |
|
) |
|
|
|
final_dna_embeddings = self.cross_attention_layer_protein.forward( |
|
hidden_states=rna_to_dna["embeddings"], |
|
encoder_hidden_states=protein_embedding["hidden_states"][-1], |
|
)["embeddings"] |
|
|
|
sequence_mask = torch.zeros(final_dna_embeddings.shape[1]) |
|
sequence_mask[self.config.pool_window_start:self.config.pool_window_end] = 1 |
|
x = torch.sum(torch.einsum('ijk,j->ijk', final_dna_embeddings, sequence_mask),axis=1)/torch.sum(sequence_mask) |
|
x = self.head_layer_1(x) |
|
x = torch.nn.functional.softplus(x) |
|
x = self.head_layer_2(x) |
|
|
|
|
|
return { |
|
"gene_expression_predictions": x, |
|
"final_dna_embeddings": final_dna_embeddings, |
|
} |