File size: 7,030 Bytes
70179d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import os
import glob
import numpy as np
from PIL import Image

import torch
import torch.nn as nn

from pipeline_flux_ipa import FluxPipeline
from transformer_flux import FluxTransformer2DModel
from attention_processor import IPAFluxAttnProcessor2_0
from transformers import AutoProcessor, SiglipVisionModel

def resize_img(input_image, max_side=1280, min_side=1024, size=None, 
               pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64):

    w, h = input_image.size
    if size is not None:
        w_resize_new, h_resize_new = size
    else:
        ratio = min_side / min(h, w)
        w, h = round(ratio*w), round(ratio*h)
        ratio = max_side / max(h, w)
        input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
        w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
        h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
    input_image = input_image.resize([w_resize_new, h_resize_new], mode)

    if pad_to_max_side:
        res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
        offset_x = (max_side - w_resize_new) // 2
        offset_y = (max_side - h_resize_new) // 2
        res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image)
        input_image = Image.fromarray(res)
    return input_image

class MLPProjModel(torch.nn.Module):
    def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, num_tokens=4):
        super().__init__()
        
        self.cross_attention_dim = cross_attention_dim
        self.num_tokens = num_tokens
        
        self.proj = torch.nn.Sequential(
            torch.nn.Linear(id_embeddings_dim, id_embeddings_dim*2),
            torch.nn.GELU(),
            torch.nn.Linear(id_embeddings_dim*2, cross_attention_dim*num_tokens),
        )
        self.norm = torch.nn.LayerNorm(cross_attention_dim)
        
    def forward(self, id_embeds):
        x = self.proj(id_embeds)
        x = x.reshape(-1, self.num_tokens, self.cross_attention_dim)
        x = self.norm(x)
        return x

class IPAdapter:
    def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4):
        self.device = device
        self.image_encoder_path = image_encoder_path
        self.ip_ckpt = ip_ckpt
        self.num_tokens = num_tokens

        self.pipe = sd_pipe.to(self.device)
        self.set_ip_adapter()

        # load image encoder
        self.image_encoder = SiglipVisionModel.from_pretrained(image_encoder_path).to(self.device, dtype=torch.bfloat16)
        self.clip_image_processor = AutoProcessor.from_pretrained(self.image_encoder_path)
        
        # image proj model
        self.image_proj_model = self.init_proj()

        self.load_ip_adapter()

    def init_proj(self):
        image_proj_model = MLPProjModel(
            cross_attention_dim=self.pipe.transformer.config.joint_attention_dim, # 4096
            id_embeddings_dim=1152, 
            num_tokens=self.num_tokens,
        ).to(self.device, dtype=torch.bfloat16)
        
        return image_proj_model
    
    def set_ip_adapter(self):
        transformer = self.pipe.transformer
        ip_attn_procs = {} # 19+38=57
        for name in transformer.attn_processors.keys():
            if name.startswith("transformer_blocks.") or name.startswith("single_transformer_blocks"):
                ip_attn_procs[name] = IPAFluxAttnProcessor2_0(
                    hidden_size=transformer.config.num_attention_heads * transformer.config.attention_head_dim,
                    cross_attention_dim=transformer.config.joint_attention_dim,
                    num_tokens=self.num_tokens,
                ).to(self.device, dtype=torch.bfloat16)
            else:
                ip_attn_procs[name] = transformer.attn_processors[name]
    
        transformer.set_attn_processor(ip_attn_procs)
    
    def load_ip_adapter(self):
        state_dict = torch.load(self.ip_ckpt, map_location="cpu")
        self.image_proj_model.load_state_dict(state_dict["image_proj"], strict=True)
        ip_layers = torch.nn.ModuleList(self.pipe.transformer.attn_processors.values())
        ip_layers.load_state_dict(state_dict["ip_adapter"], strict=False)

    @torch.inference_mode()
    def get_image_embeds(self, pil_image=None, clip_image_embeds=None):
        if pil_image is not None:
            if isinstance(pil_image, Image.Image):
                pil_image = [pil_image]
            clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
            clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=self.image_encoder.dtype)).pooler_output
            clip_image_embeds = clip_image_embeds.to(dtype=torch.bfloat16)
        else:
            clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.bfloat16)
        image_prompt_embeds = self.image_proj_model(clip_image_embeds)
        return image_prompt_embeds
    
    def set_scale(self, scale):
        for attn_processor in self.pipe.transformer.attn_processors.values():
            if isinstance(attn_processor, IPAFluxAttnProcessor2_0):
                attn_processor.scale = scale
    
    def generate(
        self,
        pil_image=None,
        clip_image_embeds=None,
        prompt=None,
        scale=1.0,
        num_samples=1,
        seed=None,
        guidance_scale=3.5,
        num_inference_steps=24,
        **kwargs,
    ):
        self.set_scale(scale)

        image_prompt_embeds = self.get_image_embeds(
            pil_image=pil_image, clip_image_embeds=clip_image_embeds
        )
        
        if seed is None:
            generator = None
        else:
            generator = torch.Generator(self.device).manual_seed(seed)
        
        images = self.pipe(
            prompt=prompt,
            image_emb=image_prompt_embeds,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            generator=generator,
            **kwargs,
        ).images

        return images


if __name__ == '__main__':
    
    model_path = "black-forest-labs/FLUX.1-dev"
    image_encoder_path = "google/siglip-so400m-patch14-384"
    ipadapter_path = "./ip-adapter.bin"
        
    transformer = FluxTransformer2DModel.from_pretrained(
        model_path, subfolder="transformer", torch_dtype=torch.bfloat16
    )

    pipe = FluxPipeline.from_pretrained(
        model_path, transformer=transformer, torch_dtype=torch.bfloat16
    )

    ip_model = IPAdapter(pipe, image_encoder_path, ipadapter_path, device="cuda", num_tokens=128)
    
    image_dir = "./assets/images/2.jpg"
    image_name = image_dir.split("/")[-1]
    image = Image.open(image_dir).convert("RGB")
    image = resize_img(image)
    
    prompt = "a young girl"
    
    images = ip_model.generate(
        pil_image=image, 
        prompt=prompt,
        scale=0.7,
        width=960, height=1280,
        seed=42
    )

    images[0].save(f"results/{image_name}")