upload codes and samples
Browse files- .gitattributes +8 -0
- conds/canny.png +3 -0
- conds/depth.png +3 -0
- conds/pose.png +3 -0
- conds/soft_edge.png +3 -0
- controlnet_qwenimage.py +353 -0
- infer_qwenimage_cn_union.py +54 -0
- outputs/canny.png +3 -0
- outputs/depth.png +3 -0
- outputs/pose.png +3 -0
- outputs/soft_edge.png +3 -0
- pipeline_qwenimage_controlnet.py +853 -0
- transformer_qwenimage.py +636 -0
.gitattributes
CHANGED
@@ -33,3 +33,11 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
conds/canny.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
conds/depth.png filter=lfs diff=lfs merge=lfs -text
|
38 |
+
conds/pose.png filter=lfs diff=lfs merge=lfs -text
|
39 |
+
conds/soft_edge.png filter=lfs diff=lfs merge=lfs -text
|
40 |
+
outputs/canny.png filter=lfs diff=lfs merge=lfs -text
|
41 |
+
outputs/depth.png filter=lfs diff=lfs merge=lfs -text
|
42 |
+
outputs/pose.png filter=lfs diff=lfs merge=lfs -text
|
43 |
+
outputs/soft_edge.png filter=lfs diff=lfs merge=lfs -text
|
conds/canny.png
ADDED
![]() |
Git LFS Details
|
conds/depth.png
ADDED
![]() |
Git LFS Details
|
conds/pose.png
ADDED
![]() |
Git LFS Details
|
conds/soft_edge.png
ADDED
![]() |
Git LFS Details
|
controlnet_qwenimage.py
ADDED
@@ -0,0 +1,353 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2025 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from dataclasses import dataclass
|
16 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.loaders import PeftAdapterMixin, FromOriginalModelMixin
|
23 |
+
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, logging, scale_lora_layers, unscale_lora_layers
|
24 |
+
from diffusers.models.attention_processor import AttentionProcessor
|
25 |
+
from diffusers.models.cache_utils import CacheMixin
|
26 |
+
from diffusers.models.controlnets.controlnet import zero_module
|
27 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
28 |
+
from diffusers.models.modeling_utils import ModelMixin
|
29 |
+
# from diffusers.models.transformers.transformer_qwenimage import QwenImageTransformerBlock, QwenTimestepProjEmbeddings, QwenEmbedRope, RMSNorm
|
30 |
+
from transformer_qwenimage import QwenImageTransformerBlock, QwenTimestepProjEmbeddings, QwenEmbedRope, RMSNorm
|
31 |
+
|
32 |
+
|
33 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
34 |
+
|
35 |
+
|
36 |
+
@dataclass
|
37 |
+
class QwenImageControlNetOutput(BaseOutput):
|
38 |
+
controlnet_block_samples: Tuple[torch.Tensor]
|
39 |
+
|
40 |
+
|
41 |
+
class QwenImageControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, CacheMixin):
|
42 |
+
_supports_gradient_checkpointing = True
|
43 |
+
|
44 |
+
@register_to_config
|
45 |
+
def __init__(
|
46 |
+
self,
|
47 |
+
patch_size: int = 2,
|
48 |
+
in_channels: int = 64,
|
49 |
+
out_channels: Optional[int] = 16,
|
50 |
+
num_layers: int = 60,
|
51 |
+
attention_head_dim: int = 128,
|
52 |
+
num_attention_heads: int = 24,
|
53 |
+
joint_attention_dim: int = 3584,
|
54 |
+
axes_dims_rope: Tuple[int, int, int] = (16, 56, 56),
|
55 |
+
extra_condition_channels: int = 0, # for controlnet-inpainting
|
56 |
+
):
|
57 |
+
super().__init__()
|
58 |
+
self.out_channels = out_channels or in_channels
|
59 |
+
self.inner_dim = num_attention_heads * attention_head_dim
|
60 |
+
|
61 |
+
self.pos_embed = QwenEmbedRope(theta=10000, axes_dim=list(axes_dims_rope), scale_rope=True)
|
62 |
+
|
63 |
+
self.time_text_embed = QwenTimestepProjEmbeddings(embedding_dim=self.inner_dim)
|
64 |
+
|
65 |
+
self.txt_norm = RMSNorm(joint_attention_dim, eps=1e-6)
|
66 |
+
|
67 |
+
self.img_in = nn.Linear(in_channels, self.inner_dim)
|
68 |
+
self.txt_in = nn.Linear(joint_attention_dim, self.inner_dim)
|
69 |
+
|
70 |
+
self.transformer_blocks = nn.ModuleList(
|
71 |
+
[
|
72 |
+
QwenImageTransformerBlock(
|
73 |
+
dim=self.inner_dim,
|
74 |
+
num_attention_heads=num_attention_heads,
|
75 |
+
attention_head_dim=attention_head_dim,
|
76 |
+
)
|
77 |
+
for _ in range(num_layers)
|
78 |
+
]
|
79 |
+
)
|
80 |
+
|
81 |
+
# controlnet_blocks
|
82 |
+
self.controlnet_blocks = nn.ModuleList([])
|
83 |
+
for _ in range(len(self.transformer_blocks)):
|
84 |
+
self.controlnet_blocks.append(zero_module(nn.Linear(self.inner_dim, self.inner_dim)))
|
85 |
+
self.controlnet_x_embedder = zero_module(torch.nn.Linear(in_channels + extra_condition_channels, self.inner_dim))
|
86 |
+
|
87 |
+
self.gradient_checkpointing = False
|
88 |
+
|
89 |
+
@property
|
90 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
91 |
+
def attn_processors(self):
|
92 |
+
r"""
|
93 |
+
Returns:
|
94 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
95 |
+
indexed by its weight name.
|
96 |
+
"""
|
97 |
+
# set recursively
|
98 |
+
processors = {}
|
99 |
+
|
100 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
101 |
+
if hasattr(module, "get_processor"):
|
102 |
+
processors[f"{name}.processor"] = module.get_processor()
|
103 |
+
|
104 |
+
for sub_name, child in module.named_children():
|
105 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
106 |
+
|
107 |
+
return processors
|
108 |
+
|
109 |
+
for name, module in self.named_children():
|
110 |
+
fn_recursive_add_processors(name, module, processors)
|
111 |
+
|
112 |
+
return processors
|
113 |
+
|
114 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
115 |
+
def set_attn_processor(self, processor):
|
116 |
+
r"""
|
117 |
+
Sets the attention processor to use to compute attention.
|
118 |
+
|
119 |
+
Parameters:
|
120 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
121 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
122 |
+
for **all** `Attention` layers.
|
123 |
+
|
124 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
125 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
126 |
+
|
127 |
+
"""
|
128 |
+
count = len(self.attn_processors.keys())
|
129 |
+
|
130 |
+
if isinstance(processor, dict) and len(processor) != count:
|
131 |
+
raise ValueError(
|
132 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
133 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
134 |
+
)
|
135 |
+
|
136 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
137 |
+
if hasattr(module, "set_processor"):
|
138 |
+
if not isinstance(processor, dict):
|
139 |
+
module.set_processor(processor)
|
140 |
+
else:
|
141 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
142 |
+
|
143 |
+
for sub_name, child in module.named_children():
|
144 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
145 |
+
|
146 |
+
for name, module in self.named_children():
|
147 |
+
fn_recursive_attn_processor(name, module, processor)
|
148 |
+
|
149 |
+
@classmethod
|
150 |
+
def from_transformer(
|
151 |
+
cls,
|
152 |
+
transformer,
|
153 |
+
num_layers: int = 5,
|
154 |
+
attention_head_dim: int = 128,
|
155 |
+
num_attention_heads: int = 24,
|
156 |
+
load_weights_from_transformer=True,
|
157 |
+
extra_condition_channels: int = 0,
|
158 |
+
):
|
159 |
+
config = dict(transformer.config)
|
160 |
+
config["num_layers"] = num_layers
|
161 |
+
config["attention_head_dim"] = attention_head_dim
|
162 |
+
config["num_attention_heads"] = num_attention_heads
|
163 |
+
config["extra_condition_channels"] = extra_condition_channels
|
164 |
+
|
165 |
+
controlnet = cls.from_config(config)
|
166 |
+
|
167 |
+
if load_weights_from_transformer:
|
168 |
+
controlnet.pos_embed.load_state_dict(transformer.pos_embed.state_dict())
|
169 |
+
controlnet.time_text_embed.load_state_dict(transformer.time_text_embed.state_dict())
|
170 |
+
controlnet.img_in.load_state_dict(transformer.img_in.state_dict())
|
171 |
+
controlnet.txt_in.load_state_dict(transformer.txt_in.state_dict())
|
172 |
+
controlnet.transformer_blocks.load_state_dict(transformer.transformer_blocks.state_dict(), strict=False)
|
173 |
+
controlnet.controlnet_x_embedder = zero_module(controlnet.controlnet_x_embedder)
|
174 |
+
|
175 |
+
return controlnet
|
176 |
+
|
177 |
+
def forward(
|
178 |
+
self,
|
179 |
+
hidden_states: torch.Tensor,
|
180 |
+
controlnet_cond: torch.Tensor,
|
181 |
+
conditioning_scale: float = 1.0,
|
182 |
+
encoder_hidden_states: torch.Tensor = None,
|
183 |
+
encoder_hidden_states_mask: torch.Tensor = None,
|
184 |
+
timestep: torch.LongTensor = None,
|
185 |
+
img_shapes: Optional[List[Tuple[int, int, int]]] = None,
|
186 |
+
txt_seq_lens: Optional[List[int]] = None,
|
187 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
188 |
+
return_dict: bool = True,
|
189 |
+
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
190 |
+
"""
|
191 |
+
The [`FluxTransformer2DModel`] forward method.
|
192 |
+
|
193 |
+
Args:
|
194 |
+
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
195 |
+
Input `hidden_states`.
|
196 |
+
controlnet_cond (`torch.Tensor`):
|
197 |
+
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
|
198 |
+
conditioning_scale (`float`, defaults to `1.0`):
|
199 |
+
The scale factor for ControlNet outputs.
|
200 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
201 |
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
202 |
+
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
203 |
+
from the embeddings of input conditions.
|
204 |
+
timestep ( `torch.LongTensor`):
|
205 |
+
Used to indicate denoising step.
|
206 |
+
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
207 |
+
A list of tensors that if specified are added to the residuals of transformer blocks.
|
208 |
+
joint_attention_kwargs (`dict`, *optional*):
|
209 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
210 |
+
`self.processor` in
|
211 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
212 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
213 |
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
214 |
+
tuple.
|
215 |
+
|
216 |
+
Returns:
|
217 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
218 |
+
`tuple` where the first element is the sample tensor.
|
219 |
+
"""
|
220 |
+
if joint_attention_kwargs is not None:
|
221 |
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
222 |
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
223 |
+
else:
|
224 |
+
lora_scale = 1.0
|
225 |
+
|
226 |
+
if USE_PEFT_BACKEND:
|
227 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
228 |
+
scale_lora_layers(self, lora_scale)
|
229 |
+
else:
|
230 |
+
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
231 |
+
logger.warning(
|
232 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
233 |
+
)
|
234 |
+
hidden_states = self.img_in(hidden_states)
|
235 |
+
|
236 |
+
# add
|
237 |
+
hidden_states = hidden_states + self.controlnet_x_embedder(controlnet_cond)
|
238 |
+
|
239 |
+
temb = self.time_text_embed(timestep, hidden_states)
|
240 |
+
|
241 |
+
image_rotary_emb = self.pos_embed(img_shapes, txt_seq_lens, device=hidden_states.device)
|
242 |
+
|
243 |
+
timestep = timestep.to(hidden_states.dtype)
|
244 |
+
encoder_hidden_states = self.txt_norm(encoder_hidden_states)
|
245 |
+
encoder_hidden_states = self.txt_in(encoder_hidden_states)
|
246 |
+
|
247 |
+
block_samples = ()
|
248 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
249 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
250 |
+
encoder_hidden_states, hidden_states = self._gradient_checkpointing_func(
|
251 |
+
block,
|
252 |
+
hidden_states,
|
253 |
+
encoder_hidden_states,
|
254 |
+
encoder_hidden_states_mask,
|
255 |
+
temb,
|
256 |
+
image_rotary_emb,
|
257 |
+
)
|
258 |
+
|
259 |
+
else:
|
260 |
+
encoder_hidden_states, hidden_states = block(
|
261 |
+
hidden_states=hidden_states,
|
262 |
+
encoder_hidden_states=encoder_hidden_states,
|
263 |
+
encoder_hidden_states_mask=encoder_hidden_states_mask,
|
264 |
+
temb=temb,
|
265 |
+
image_rotary_emb=image_rotary_emb,
|
266 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
267 |
+
)
|
268 |
+
block_samples = block_samples + (hidden_states,)
|
269 |
+
|
270 |
+
# controlnet block
|
271 |
+
controlnet_block_samples = ()
|
272 |
+
for block_sample, controlnet_block in zip(block_samples, self.controlnet_blocks):
|
273 |
+
block_sample = controlnet_block(block_sample)
|
274 |
+
controlnet_block_samples = controlnet_block_samples + (block_sample,)
|
275 |
+
|
276 |
+
# scaling
|
277 |
+
controlnet_block_samples = [sample * conditioning_scale for sample in controlnet_block_samples]
|
278 |
+
controlnet_block_samples = None if len(controlnet_block_samples) == 0 else controlnet_block_samples
|
279 |
+
|
280 |
+
if USE_PEFT_BACKEND:
|
281 |
+
# remove `lora_scale` from each PEFT layer
|
282 |
+
unscale_lora_layers(self, lora_scale)
|
283 |
+
|
284 |
+
if not return_dict:
|
285 |
+
return (controlnet_block_samples)
|
286 |
+
|
287 |
+
return QwenImageControlNetOutput(
|
288 |
+
controlnet_block_samples=controlnet_block_samples,
|
289 |
+
)
|
290 |
+
|
291 |
+
|
292 |
+
class QwenImageMultiControlNetModel(ModelMixin):
|
293 |
+
r"""
|
294 |
+
`QwenImageMultiControlNetModel` wrapper class for Multi-QwenImageControlNetModel
|
295 |
+
|
296 |
+
This module is a wrapper for multiple instances of the `QwenImageControlNetModel`. The `forward()` API is designed to be
|
297 |
+
compatible with `QwenImageControlNetModel`.
|
298 |
+
|
299 |
+
Args:
|
300 |
+
controlnets (`List[QwenImageControlNetModel]`):
|
301 |
+
Provides additional conditioning to the unet during the denoising process. You must set multiple
|
302 |
+
`QwenImageControlNetModel` as a list.
|
303 |
+
"""
|
304 |
+
|
305 |
+
def __init__(self, controlnets):
|
306 |
+
super().__init__()
|
307 |
+
self.nets = nn.ModuleList(controlnets)
|
308 |
+
|
309 |
+
def forward(
|
310 |
+
self,
|
311 |
+
hidden_states: torch.FloatTensor,
|
312 |
+
controlnet_cond: List[torch.tensor],
|
313 |
+
conditioning_scale: List[float],
|
314 |
+
encoder_hidden_states: torch.Tensor = None,
|
315 |
+
encoder_hidden_states_mask: torch.Tensor = None,
|
316 |
+
timestep: torch.LongTensor = None,
|
317 |
+
img_shapes: Optional[List[Tuple[int, int, int]]] = None,
|
318 |
+
txt_seq_lens: Optional[List[int]] = None,
|
319 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
320 |
+
return_dict: bool = True,
|
321 |
+
) -> Union[QwenImageControlNetOutput, Tuple]:
|
322 |
+
# ControlNet-Union with multiple conditions
|
323 |
+
# only load one ControlNet for saving memories
|
324 |
+
if len(self.nets) == 1:
|
325 |
+
controlnet = self.nets[0]
|
326 |
+
|
327 |
+
for i, (image, scale) in enumerate(zip(controlnet_cond, conditioning_scale)):
|
328 |
+
block_samples = controlnet(
|
329 |
+
hidden_states=hidden_states,
|
330 |
+
controlnet_cond=image,
|
331 |
+
conditioning_scale=scale,
|
332 |
+
encoder_hidden_states=encoder_hidden_states,
|
333 |
+
encoder_hidden_states_mask=encoder_hidden_states_mask,
|
334 |
+
timestep=timestep,
|
335 |
+
img_shapes=img_shapes,
|
336 |
+
txt_seq_lens=txt_seq_lens,
|
337 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
338 |
+
return_dict=return_dict,
|
339 |
+
)
|
340 |
+
|
341 |
+
# merge samples
|
342 |
+
if i == 0:
|
343 |
+
control_block_samples = block_samples
|
344 |
+
else:
|
345 |
+
if block_samples is not None and control_block_samples is not None:
|
346 |
+
control_block_samples = [
|
347 |
+
control_block_sample + block_sample
|
348 |
+
for control_block_sample, block_sample in zip(control_block_samples, block_samples)
|
349 |
+
]
|
350 |
+
else:
|
351 |
+
raise ValueError("QwenImageMultiControlNetModel only supports controlnet-union now.")
|
352 |
+
|
353 |
+
return control_block_samples
|
infer_qwenimage_cn_union.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from diffusers.utils import load_image
|
3 |
+
|
4 |
+
# before merging, please import via local path
|
5 |
+
from controlnet_qwenimage import QwenImageControlNetModel
|
6 |
+
from transformer_qwenimage import QwenImageTransformer2DModel
|
7 |
+
from pipeline_qwenimage_controlnet import QwenImageControlNetPipeline
|
8 |
+
|
9 |
+
if __name__ == "__main__":
|
10 |
+
|
11 |
+
base_model = "Qwen/Qwen-Image"
|
12 |
+
controlnet_model = "InstantX/Qwen-Image-ControlNet-Union"
|
13 |
+
|
14 |
+
controlnet = QwenImageControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)
|
15 |
+
transformer = QwenImageTransformer2DModel.from_pretrained(base_model, subfolder="transformer", torch_dtype=torch.bfloat16)
|
16 |
+
|
17 |
+
pipe = QwenImageControlNetPipeline.from_pretrained(
|
18 |
+
base_model, controlnet=controlnet, transformer=transformer, torch_dtype=torch.bfloat16
|
19 |
+
)
|
20 |
+
pipe.to("cuda")
|
21 |
+
|
22 |
+
# canny
|
23 |
+
# it is highly suggested to add 'TEXT' into prompt
|
24 |
+
control_image = load_image("conds/canny.png")
|
25 |
+
prompt = "Aesthetics art, traditional asian pagoda, elaborate golden accents, sky blue and white color palette, swirling cloud pattern, digital illustration, east asian architecture, ornamental rooftop, intricate detailing on building, cultural representation."
|
26 |
+
controlnet_conditioning_scale = 1.0
|
27 |
+
|
28 |
+
# soft edge, recommended scale: 0.8 - 1.0
|
29 |
+
# control_image = load_image("conds/soft_edge.png")
|
30 |
+
# prompt = "Photograph of a young man with light brown hair jumping mid-air off a large, reddish-brown rock. He's wearing a navy blue sweater, light blue shirt, gray pants, and brown shoes. His arms are outstretched, and he has a slight smile on his face. The background features a cloudy sky and a distant, leafless tree line. The grass around the rock is patchy."
|
31 |
+
# controlnet_conditioning_scale = 0.9
|
32 |
+
|
33 |
+
# depth
|
34 |
+
# control_image = load_image("conds/depth.png")
|
35 |
+
# prompt = "A swanky, minimalist living room with a huge floor-to-ceiling window letting in loads of natural light. A beige couch with white cushions sits on a wooden floor, with a matching coffee table in front. The walls are a soft, warm beige, decorated with two framed botanical prints. A potted plant chills in the corner near the window. Sunlight pours through the leaves outside, casting cool shadows on the floor."
|
36 |
+
# controlnet_conditioning_scale = 0.9
|
37 |
+
|
38 |
+
# pose
|
39 |
+
# control_image = load_image("conds/pose.png")
|
40 |
+
# prompt = "Photograph of a young man with light brown hair and a beard, wearing a beige flat cap, black leather jacket, gray shirt, brown pants, and white sneakers. He's sitting on a concrete ledge in front of a large circular window, with a cityscape reflected in the glass. The wall is cream-colored, and the sky is clear blue. His shadow is cast on the wall."
|
41 |
+
# controlnet_conditioning_scale = 1.0
|
42 |
+
|
43 |
+
image = pipe(
|
44 |
+
prompt=prompt,
|
45 |
+
negative_prompt=" ",
|
46 |
+
control_image=control_image,
|
47 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
48 |
+
width=control_image.size[0],
|
49 |
+
height=control_image.size[1],
|
50 |
+
num_inference_steps=30,
|
51 |
+
true_cfg_scale=4.0,
|
52 |
+
generator=torch.Generator(device="cuda").manual_seed(42),
|
53 |
+
).images[0]
|
54 |
+
image.save(f"qwenimage_cn_union_result.png")
|
outputs/canny.png
ADDED
![]() |
Git LFS Details
|
outputs/depth.png
ADDED
![]() |
Git LFS Details
|
outputs/pose.png
ADDED
![]() |
Git LFS Details
|
outputs/soft_edge.png
ADDED
![]() |
Git LFS Details
|
pipeline_qwenimage_controlnet.py
ADDED
@@ -0,0 +1,853 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2025 Qwen-Image Team, InstantX Team and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import inspect
|
16 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
import torch
|
20 |
+
from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2Tokenizer
|
21 |
+
|
22 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
23 |
+
from diffusers.loaders import QwenImageLoraLoaderMixin
|
24 |
+
from diffusers.models import AutoencoderKLQwenImage
|
25 |
+
# from diffusers.models import AutoencoderKLQwenImage, QwenImageTransformer2DModel
|
26 |
+
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
27 |
+
from diffusers.utils import is_torch_xla_available, logging, replace_example_docstring
|
28 |
+
from diffusers.utils.torch_utils import randn_tensor
|
29 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
30 |
+
from diffusers.pipelines.qwenimage.pipeline_output import QwenImagePipelineOutput
|
31 |
+
# from diffusers.models.controlnets.controlnet_qwenimage import QwenImageControlNetModel
|
32 |
+
from transformer_qwenimage import QwenImageTransformer2DModel
|
33 |
+
from controlnet_qwenimage import QwenImageControlNetModel, QwenImageMultiControlNetModel
|
34 |
+
|
35 |
+
if is_torch_xla_available():
|
36 |
+
import torch_xla.core.xla_model as xm
|
37 |
+
|
38 |
+
XLA_AVAILABLE = True
|
39 |
+
else:
|
40 |
+
XLA_AVAILABLE = False
|
41 |
+
|
42 |
+
|
43 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
44 |
+
|
45 |
+
EXAMPLE_DOC_STRING = """
|
46 |
+
Examples:
|
47 |
+
```py
|
48 |
+
>>> import torch
|
49 |
+
>>> from diffusers.utils import load_image
|
50 |
+
>>> from diffusers import QwenImageControlNetPipeline
|
51 |
+
|
52 |
+
>>> controlnet = QwenImageControlNetModel.from_pretrained("InstantX/Qwen-Image-ControlNet-Union", torch_dtype=torch.bfloat16)
|
53 |
+
>>> pipe = QwenImageControlNetPipeline.from_pretrained("Qwen/Qwen-Image", controlnet=controlnet, torch_dtype=torch.bfloat16)
|
54 |
+
>>> pipe.to("cuda")
|
55 |
+
>>> prompt = ""
|
56 |
+
>>> negative_prompt = " "
|
57 |
+
>>> control_image = load_image(CONDITION_IMAGE_PATH)
|
58 |
+
>>> # Depending on the variant being used, the pipeline call will slightly vary.
|
59 |
+
>>> # Refer to the pipeline documentation for more details.
|
60 |
+
>>> image = pipe(prompt, negative_prompt=negative_prompt, control_image=control_image, controlnet_conditioning_scale=1.0, num_inference_steps=30, true_cfg_scale=4.0).images[0]
|
61 |
+
>>> image.save("qwenimage_cn_union.png")
|
62 |
+
```
|
63 |
+
"""
|
64 |
+
|
65 |
+
|
66 |
+
def calculate_shift(
|
67 |
+
image_seq_len,
|
68 |
+
base_seq_len: int = 256,
|
69 |
+
max_seq_len: int = 4096,
|
70 |
+
base_shift: float = 0.5,
|
71 |
+
max_shift: float = 1.15,
|
72 |
+
):
|
73 |
+
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
74 |
+
b = base_shift - m * base_seq_len
|
75 |
+
mu = image_seq_len * m + b
|
76 |
+
return mu
|
77 |
+
|
78 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
79 |
+
def retrieve_latents(
|
80 |
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
81 |
+
):
|
82 |
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
83 |
+
return encoder_output.latent_dist.sample(generator)
|
84 |
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
85 |
+
return encoder_output.latent_dist.mode()
|
86 |
+
elif hasattr(encoder_output, "latents"):
|
87 |
+
return encoder_output.latents
|
88 |
+
else:
|
89 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
90 |
+
|
91 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
92 |
+
def retrieve_timesteps(
|
93 |
+
scheduler,
|
94 |
+
num_inference_steps: Optional[int] = None,
|
95 |
+
device: Optional[Union[str, torch.device]] = None,
|
96 |
+
timesteps: Optional[List[int]] = None,
|
97 |
+
sigmas: Optional[List[float]] = None,
|
98 |
+
**kwargs,
|
99 |
+
):
|
100 |
+
r"""
|
101 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
102 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
103 |
+
|
104 |
+
Args:
|
105 |
+
scheduler (`SchedulerMixin`):
|
106 |
+
The scheduler to get timesteps from.
|
107 |
+
num_inference_steps (`int`):
|
108 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
109 |
+
must be `None`.
|
110 |
+
device (`str` or `torch.device`, *optional*):
|
111 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
112 |
+
timesteps (`List[int]`, *optional*):
|
113 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
114 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
115 |
+
sigmas (`List[float]`, *optional*):
|
116 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
117 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
118 |
+
|
119 |
+
Returns:
|
120 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
121 |
+
second element is the number of inference steps.
|
122 |
+
"""
|
123 |
+
if timesteps is not None and sigmas is not None:
|
124 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
125 |
+
if timesteps is not None:
|
126 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
127 |
+
if not accepts_timesteps:
|
128 |
+
raise ValueError(
|
129 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
130 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
131 |
+
)
|
132 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
133 |
+
timesteps = scheduler.timesteps
|
134 |
+
num_inference_steps = len(timesteps)
|
135 |
+
elif sigmas is not None:
|
136 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
137 |
+
if not accept_sigmas:
|
138 |
+
raise ValueError(
|
139 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
140 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
141 |
+
)
|
142 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
143 |
+
timesteps = scheduler.timesteps
|
144 |
+
num_inference_steps = len(timesteps)
|
145 |
+
else:
|
146 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
147 |
+
timesteps = scheduler.timesteps
|
148 |
+
return timesteps, num_inference_steps
|
149 |
+
|
150 |
+
|
151 |
+
class QwenImageControlNetPipeline(DiffusionPipeline, QwenImageLoraLoaderMixin):
|
152 |
+
r"""
|
153 |
+
The QwenImage pipeline for text-to-image generation.
|
154 |
+
|
155 |
+
Args:
|
156 |
+
transformer ([`QwenImageTransformer2DModel`]):
|
157 |
+
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
|
158 |
+
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
|
159 |
+
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
160 |
+
vae ([`AutoencoderKL`]):
|
161 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
162 |
+
text_encoder ([`Qwen2.5-VL-7B-Instruct`]):
|
163 |
+
[Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct), specifically the
|
164 |
+
[Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) variant.
|
165 |
+
tokenizer (`QwenTokenizer`):
|
166 |
+
Tokenizer of class
|
167 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
|
168 |
+
"""
|
169 |
+
|
170 |
+
model_cpu_offload_seq = "text_encoder->transformer->vae"
|
171 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds"]
|
172 |
+
|
173 |
+
def __init__(
|
174 |
+
self,
|
175 |
+
scheduler: FlowMatchEulerDiscreteScheduler,
|
176 |
+
vae: AutoencoderKLQwenImage,
|
177 |
+
text_encoder: Qwen2_5_VLForConditionalGeneration,
|
178 |
+
tokenizer: Qwen2Tokenizer,
|
179 |
+
transformer: QwenImageTransformer2DModel,
|
180 |
+
controlnet: QwenImageControlNetModel,
|
181 |
+
):
|
182 |
+
super().__init__()
|
183 |
+
|
184 |
+
self.register_modules(
|
185 |
+
vae=vae,
|
186 |
+
text_encoder=text_encoder,
|
187 |
+
tokenizer=tokenizer,
|
188 |
+
transformer=transformer,
|
189 |
+
scheduler=scheduler,
|
190 |
+
controlnet=controlnet,
|
191 |
+
)
|
192 |
+
self.vae_scale_factor = 2 ** len(self.vae.temperal_downsample) if getattr(self, "vae", None) else 8
|
193 |
+
# QwenImage latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
|
194 |
+
# by the patch size. So the vae scale factor is multiplied by the patch size to account for this
|
195 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
|
196 |
+
self.tokenizer_max_length = 1024
|
197 |
+
self.prompt_template_encode = "<|im_start|>system\nDescribe the image by detailing the color, shape, size, texture, quantity, text, spatial relationships of the objects and background:<|im_end|>\n<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n"
|
198 |
+
self.prompt_template_encode_start_idx = 34
|
199 |
+
self.default_sample_size = 128
|
200 |
+
|
201 |
+
def _extract_masked_hidden(self, hidden_states: torch.Tensor, mask: torch.Tensor):
|
202 |
+
bool_mask = mask.bool()
|
203 |
+
valid_lengths = bool_mask.sum(dim=1)
|
204 |
+
selected = hidden_states[bool_mask]
|
205 |
+
split_result = torch.split(selected, valid_lengths.tolist(), dim=0)
|
206 |
+
|
207 |
+
return split_result
|
208 |
+
|
209 |
+
def _get_qwen_prompt_embeds(
|
210 |
+
self,
|
211 |
+
prompt: Union[str, List[str]] = None,
|
212 |
+
device: Optional[torch.device] = None,
|
213 |
+
dtype: Optional[torch.dtype] = None,
|
214 |
+
):
|
215 |
+
device = device or self._execution_device
|
216 |
+
dtype = dtype or self.text_encoder.dtype
|
217 |
+
|
218 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
219 |
+
|
220 |
+
template = self.prompt_template_encode
|
221 |
+
drop_idx = self.prompt_template_encode_start_idx
|
222 |
+
txt = [template.format(e) for e in prompt]
|
223 |
+
txt_tokens = self.tokenizer(
|
224 |
+
txt, max_length=self.tokenizer_max_length + drop_idx, padding=True, truncation=True, return_tensors="pt"
|
225 |
+
).to(self.device)
|
226 |
+
encoder_hidden_states = self.text_encoder(
|
227 |
+
input_ids=txt_tokens.input_ids,
|
228 |
+
attention_mask=txt_tokens.attention_mask,
|
229 |
+
output_hidden_states=True,
|
230 |
+
)
|
231 |
+
hidden_states = encoder_hidden_states.hidden_states[-1]
|
232 |
+
split_hidden_states = self._extract_masked_hidden(hidden_states, txt_tokens.attention_mask)
|
233 |
+
split_hidden_states = [e[drop_idx:] for e in split_hidden_states]
|
234 |
+
attn_mask_list = [torch.ones(e.size(0), dtype=torch.long, device=e.device) for e in split_hidden_states]
|
235 |
+
max_seq_len = max([e.size(0) for e in split_hidden_states])
|
236 |
+
prompt_embeds = torch.stack(
|
237 |
+
[torch.cat([u, u.new_zeros(max_seq_len - u.size(0), u.size(1))]) for u in split_hidden_states]
|
238 |
+
)
|
239 |
+
encoder_attention_mask = torch.stack(
|
240 |
+
[torch.cat([u, u.new_zeros(max_seq_len - u.size(0))]) for u in attn_mask_list]
|
241 |
+
)
|
242 |
+
|
243 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
244 |
+
|
245 |
+
return prompt_embeds, encoder_attention_mask
|
246 |
+
|
247 |
+
def encode_prompt(
|
248 |
+
self,
|
249 |
+
prompt: Union[str, List[str]],
|
250 |
+
device: Optional[torch.device] = None,
|
251 |
+
num_images_per_prompt: int = 1,
|
252 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
253 |
+
prompt_embeds_mask: Optional[torch.Tensor] = None,
|
254 |
+
max_sequence_length: int = 1024,
|
255 |
+
):
|
256 |
+
r"""
|
257 |
+
|
258 |
+
Args:
|
259 |
+
prompt (`str` or `List[str]`, *optional*):
|
260 |
+
prompt to be encoded
|
261 |
+
device: (`torch.device`):
|
262 |
+
torch device
|
263 |
+
num_images_per_prompt (`int`):
|
264 |
+
number of images that should be generated per prompt
|
265 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
266 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
267 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
268 |
+
"""
|
269 |
+
device = device or self._execution_device
|
270 |
+
|
271 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
272 |
+
batch_size = len(prompt) if prompt_embeds is None else prompt_embeds.shape[0]
|
273 |
+
|
274 |
+
if prompt_embeds is None:
|
275 |
+
prompt_embeds, prompt_embeds_mask = self._get_qwen_prompt_embeds(prompt, device)
|
276 |
+
|
277 |
+
_, seq_len, _ = prompt_embeds.shape
|
278 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
279 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
280 |
+
prompt_embeds_mask = prompt_embeds_mask.repeat(1, num_images_per_prompt, 1)
|
281 |
+
prompt_embeds_mask = prompt_embeds_mask.view(batch_size * num_images_per_prompt, seq_len)
|
282 |
+
|
283 |
+
return prompt_embeds, prompt_embeds_mask
|
284 |
+
|
285 |
+
def check_inputs(
|
286 |
+
self,
|
287 |
+
prompt,
|
288 |
+
height,
|
289 |
+
width,
|
290 |
+
negative_prompt=None,
|
291 |
+
prompt_embeds=None,
|
292 |
+
negative_prompt_embeds=None,
|
293 |
+
prompt_embeds_mask=None,
|
294 |
+
negative_prompt_embeds_mask=None,
|
295 |
+
callback_on_step_end_tensor_inputs=None,
|
296 |
+
max_sequence_length=None,
|
297 |
+
):
|
298 |
+
if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
|
299 |
+
logger.warning(
|
300 |
+
f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
|
301 |
+
)
|
302 |
+
|
303 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
304 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
305 |
+
):
|
306 |
+
raise ValueError(
|
307 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
308 |
+
)
|
309 |
+
|
310 |
+
if prompt is not None and prompt_embeds is not None:
|
311 |
+
raise ValueError(
|
312 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
313 |
+
" only forward one of the two."
|
314 |
+
)
|
315 |
+
elif prompt is None and prompt_embeds is None:
|
316 |
+
raise ValueError(
|
317 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
318 |
+
)
|
319 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
320 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
321 |
+
|
322 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
323 |
+
raise ValueError(
|
324 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
325 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
326 |
+
)
|
327 |
+
|
328 |
+
if prompt_embeds is not None and prompt_embeds_mask is None:
|
329 |
+
raise ValueError(
|
330 |
+
"If `prompt_embeds` are provided, `prompt_embeds_mask` also have to be passed. Make sure to generate `prompt_embeds_mask` from the same text encoder that was used to generate `prompt_embeds`."
|
331 |
+
)
|
332 |
+
if negative_prompt_embeds is not None and negative_prompt_embeds_mask is None:
|
333 |
+
raise ValueError(
|
334 |
+
"If `negative_prompt_embeds` are provided, `negative_prompt_embeds_mask` also have to be passed. Make sure to generate `negative_prompt_embeds_mask` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
335 |
+
)
|
336 |
+
|
337 |
+
if max_sequence_length is not None and max_sequence_length > 1024:
|
338 |
+
raise ValueError(f"`max_sequence_length` cannot be greater than 1024 but is {max_sequence_length}")
|
339 |
+
|
340 |
+
@staticmethod
|
341 |
+
def _pack_latents(latents, batch_size, num_channels_latents, height, width):
|
342 |
+
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
|
343 |
+
latents = latents.permute(0, 2, 4, 1, 3, 5)
|
344 |
+
latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
|
345 |
+
|
346 |
+
return latents
|
347 |
+
|
348 |
+
@staticmethod
|
349 |
+
def _unpack_latents(latents, height, width, vae_scale_factor):
|
350 |
+
batch_size, num_patches, channels = latents.shape
|
351 |
+
|
352 |
+
# VAE applies 8x compression on images but we must also account for packing which requires
|
353 |
+
# latent height and width to be divisible by 2.
|
354 |
+
height = 2 * (int(height) // (vae_scale_factor * 2))
|
355 |
+
width = 2 * (int(width) // (vae_scale_factor * 2))
|
356 |
+
|
357 |
+
latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
|
358 |
+
latents = latents.permute(0, 3, 1, 4, 2, 5)
|
359 |
+
|
360 |
+
latents = latents.reshape(batch_size, channels // (2 * 2), 1, height, width)
|
361 |
+
|
362 |
+
return latents
|
363 |
+
|
364 |
+
def enable_vae_slicing(self):
|
365 |
+
r"""
|
366 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
367 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
368 |
+
"""
|
369 |
+
self.vae.enable_slicing()
|
370 |
+
|
371 |
+
def disable_vae_slicing(self):
|
372 |
+
r"""
|
373 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
374 |
+
computing decoding in one step.
|
375 |
+
"""
|
376 |
+
self.vae.disable_slicing()
|
377 |
+
|
378 |
+
def enable_vae_tiling(self):
|
379 |
+
r"""
|
380 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
381 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
382 |
+
processing larger images.
|
383 |
+
"""
|
384 |
+
self.vae.enable_tiling()
|
385 |
+
|
386 |
+
def disable_vae_tiling(self):
|
387 |
+
r"""
|
388 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
389 |
+
computing decoding in one step.
|
390 |
+
"""
|
391 |
+
self.vae.disable_tiling()
|
392 |
+
|
393 |
+
def prepare_latents(
|
394 |
+
self,
|
395 |
+
batch_size,
|
396 |
+
num_channels_latents,
|
397 |
+
height,
|
398 |
+
width,
|
399 |
+
dtype,
|
400 |
+
device,
|
401 |
+
generator,
|
402 |
+
latents=None,
|
403 |
+
):
|
404 |
+
# VAE applies 8x compression on images but we must also account for packing which requires
|
405 |
+
# latent height and width to be divisible by 2.
|
406 |
+
height = 2 * (int(height) // (self.vae_scale_factor * 2))
|
407 |
+
width = 2 * (int(width) // (self.vae_scale_factor * 2))
|
408 |
+
|
409 |
+
shape = (batch_size, 1, num_channels_latents, height, width)
|
410 |
+
|
411 |
+
if latents is not None:
|
412 |
+
return latents.to(device=device, dtype=dtype)
|
413 |
+
|
414 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
415 |
+
raise ValueError(
|
416 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
417 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
418 |
+
)
|
419 |
+
|
420 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
421 |
+
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
|
422 |
+
|
423 |
+
return latents
|
424 |
+
|
425 |
+
# Copied from diffusers.pipelines.controlnet_sd3.pipeline_stable_diffusion_3_controlnet.StableDiffusion3ControlNetPipeline.prepare_image
|
426 |
+
def prepare_image(
|
427 |
+
self,
|
428 |
+
image,
|
429 |
+
width,
|
430 |
+
height,
|
431 |
+
batch_size,
|
432 |
+
num_images_per_prompt,
|
433 |
+
device,
|
434 |
+
dtype,
|
435 |
+
do_classifier_free_guidance=False,
|
436 |
+
guess_mode=False,
|
437 |
+
):
|
438 |
+
if isinstance(image, torch.Tensor):
|
439 |
+
pass
|
440 |
+
else:
|
441 |
+
image = self.image_processor.preprocess(image, height=height, width=width)
|
442 |
+
|
443 |
+
image_batch_size = image.shape[0]
|
444 |
+
|
445 |
+
if image_batch_size == 1:
|
446 |
+
repeat_by = batch_size
|
447 |
+
else:
|
448 |
+
# image batch size is the same as prompt batch size
|
449 |
+
repeat_by = num_images_per_prompt
|
450 |
+
|
451 |
+
image = image.repeat_interleave(repeat_by, dim=0)
|
452 |
+
|
453 |
+
image = image.to(device=device, dtype=dtype)
|
454 |
+
|
455 |
+
if do_classifier_free_guidance and not guess_mode:
|
456 |
+
image = torch.cat([image] * 2)
|
457 |
+
|
458 |
+
return image
|
459 |
+
|
460 |
+
@property
|
461 |
+
def guidance_scale(self):
|
462 |
+
return self._guidance_scale
|
463 |
+
|
464 |
+
@property
|
465 |
+
def attention_kwargs(self):
|
466 |
+
return self._attention_kwargs
|
467 |
+
|
468 |
+
@property
|
469 |
+
def num_timesteps(self):
|
470 |
+
return self._num_timesteps
|
471 |
+
|
472 |
+
@property
|
473 |
+
def current_timestep(self):
|
474 |
+
return self._current_timestep
|
475 |
+
|
476 |
+
@property
|
477 |
+
def interrupt(self):
|
478 |
+
return self._interrupt
|
479 |
+
|
480 |
+
@torch.no_grad()
|
481 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
482 |
+
def __call__(
|
483 |
+
self,
|
484 |
+
prompt: Union[str, List[str]] = None,
|
485 |
+
negative_prompt: Union[str, List[str]] = None,
|
486 |
+
true_cfg_scale: float = 4.0,
|
487 |
+
height: Optional[int] = None,
|
488 |
+
width: Optional[int] = None,
|
489 |
+
num_inference_steps: int = 50,
|
490 |
+
sigmas: Optional[List[float]] = None,
|
491 |
+
guidance_scale: float = 1.0,
|
492 |
+
|
493 |
+
control_guidance_start: Union[float, List[float]] = 0.0,
|
494 |
+
control_guidance_end: Union[float, List[float]] = 1.0,
|
495 |
+
control_image: PipelineImageInput = None,
|
496 |
+
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
497 |
+
|
498 |
+
num_images_per_prompt: int = 1,
|
499 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
500 |
+
latents: Optional[torch.Tensor] = None,
|
501 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
502 |
+
prompt_embeds_mask: Optional[torch.Tensor] = None,
|
503 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
504 |
+
negative_prompt_embeds_mask: Optional[torch.Tensor] = None,
|
505 |
+
output_type: Optional[str] = "pil",
|
506 |
+
return_dict: bool = True,
|
507 |
+
attention_kwargs: Optional[Dict[str, Any]] = None,
|
508 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
509 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
510 |
+
max_sequence_length: int = 512,
|
511 |
+
):
|
512 |
+
r"""
|
513 |
+
Function invoked when calling the pipeline for generation.
|
514 |
+
|
515 |
+
Args:
|
516 |
+
prompt (`str` or `List[str]`, *optional*):
|
517 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
518 |
+
instead.
|
519 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
520 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
521 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is
|
522 |
+
not greater than `1`).
|
523 |
+
true_cfg_scale (`float`, *optional*, defaults to 1.0):
|
524 |
+
When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance.
|
525 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
526 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
527 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
528 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
529 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
530 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
531 |
+
expense of slower inference.
|
532 |
+
sigmas (`List[float]`, *optional*):
|
533 |
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
534 |
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
535 |
+
will be used.
|
536 |
+
guidance_scale (`float`, *optional*, defaults to 3.5):
|
537 |
+
Guidance scale as defined in [Classifier-Free Diffusion
|
538 |
+
Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
|
539 |
+
of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
|
540 |
+
`guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
|
541 |
+
the text `prompt`, usually at the expense of lower image quality.
|
542 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
543 |
+
The number of images to generate per prompt.
|
544 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
545 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
546 |
+
to make generation deterministic.
|
547 |
+
latents (`torch.Tensor`, *optional*):
|
548 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
549 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
550 |
+
tensor will be generated by sampling using the supplied random `generator`.
|
551 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
552 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
553 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
554 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
555 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
556 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
557 |
+
argument.
|
558 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
559 |
+
The output format of the generate image. Choose between
|
560 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
561 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
562 |
+
Whether or not to return a [`~pipelines.qwenimage.QwenImagePipelineOutput`] instead of a plain tuple.
|
563 |
+
attention_kwargs (`dict`, *optional*):
|
564 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
565 |
+
`self.processor` in
|
566 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
567 |
+
callback_on_step_end (`Callable`, *optional*):
|
568 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
569 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
570 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
571 |
+
`callback_on_step_end_tensor_inputs`.
|
572 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
573 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
574 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
575 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
576 |
+
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
|
577 |
+
|
578 |
+
Examples:
|
579 |
+
|
580 |
+
Returns:
|
581 |
+
[`~pipelines.qwenimage.QwenImagePipelineOutput`] or `tuple`:
|
582 |
+
[`~pipelines.qwenimage.QwenImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When
|
583 |
+
returning a tuple, the first element is a list with the generated images.
|
584 |
+
"""
|
585 |
+
|
586 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
587 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
588 |
+
|
589 |
+
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
|
590 |
+
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
|
591 |
+
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
|
592 |
+
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
593 |
+
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
|
594 |
+
mult = len(self.controlnet.nets) if isinstance(self.controlnet, QwenImageMultiControlNetModel) else 1
|
595 |
+
control_guidance_start, control_guidance_end = (
|
596 |
+
mult * [control_guidance_start],
|
597 |
+
mult * [control_guidance_end],
|
598 |
+
)
|
599 |
+
|
600 |
+
# 1. Check inputs. Raise error if not correct
|
601 |
+
self.check_inputs(
|
602 |
+
prompt,
|
603 |
+
height,
|
604 |
+
width,
|
605 |
+
negative_prompt=negative_prompt,
|
606 |
+
prompt_embeds=prompt_embeds,
|
607 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
608 |
+
prompt_embeds_mask=prompt_embeds_mask,
|
609 |
+
negative_prompt_embeds_mask=negative_prompt_embeds_mask,
|
610 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
611 |
+
max_sequence_length=max_sequence_length,
|
612 |
+
)
|
613 |
+
|
614 |
+
self._guidance_scale = guidance_scale
|
615 |
+
self._attention_kwargs = attention_kwargs
|
616 |
+
self._current_timestep = None
|
617 |
+
self._interrupt = False
|
618 |
+
|
619 |
+
# 2. Define call parameters
|
620 |
+
if prompt is not None and isinstance(prompt, str):
|
621 |
+
batch_size = 1
|
622 |
+
elif prompt is not None and isinstance(prompt, list):
|
623 |
+
batch_size = len(prompt)
|
624 |
+
else:
|
625 |
+
batch_size = prompt_embeds.shape[0]
|
626 |
+
|
627 |
+
device = self._execution_device
|
628 |
+
|
629 |
+
has_neg_prompt = negative_prompt is not None or (
|
630 |
+
negative_prompt_embeds is not None and negative_prompt_embeds_mask is not None
|
631 |
+
)
|
632 |
+
do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
|
633 |
+
prompt_embeds, prompt_embeds_mask = self.encode_prompt(
|
634 |
+
prompt=prompt,
|
635 |
+
prompt_embeds=prompt_embeds,
|
636 |
+
prompt_embeds_mask=prompt_embeds_mask,
|
637 |
+
device=device,
|
638 |
+
num_images_per_prompt=num_images_per_prompt,
|
639 |
+
max_sequence_length=max_sequence_length,
|
640 |
+
)
|
641 |
+
if do_true_cfg:
|
642 |
+
negative_prompt_embeds, negative_prompt_embeds_mask = self.encode_prompt(
|
643 |
+
prompt=negative_prompt,
|
644 |
+
prompt_embeds=negative_prompt_embeds,
|
645 |
+
prompt_embeds_mask=negative_prompt_embeds_mask,
|
646 |
+
device=device,
|
647 |
+
num_images_per_prompt=num_images_per_prompt,
|
648 |
+
max_sequence_length=max_sequence_length,
|
649 |
+
)
|
650 |
+
|
651 |
+
# 3. Prepare control image
|
652 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
653 |
+
if isinstance(self.controlnet, QwenImageControlNetModel):
|
654 |
+
control_image = self.prepare_image(
|
655 |
+
image=control_image,
|
656 |
+
width=width,
|
657 |
+
height=height,
|
658 |
+
batch_size=batch_size * num_images_per_prompt,
|
659 |
+
num_images_per_prompt=num_images_per_prompt,
|
660 |
+
device=device,
|
661 |
+
dtype=self.vae.dtype,
|
662 |
+
) # torch.Size([1, 3, height_ori, width_ori])
|
663 |
+
height, width = control_image.shape[-2:]
|
664 |
+
|
665 |
+
if control_image.ndim == 4:
|
666 |
+
control_image = control_image.unsqueeze(2) # torch.Size([1, 3, 1, height_ori, width_ori])
|
667 |
+
|
668 |
+
# vae encode
|
669 |
+
self.vae_scale_factor = 2 ** len(self.vae.temperal_downsample)
|
670 |
+
latents_mean = (torch.tensor(self.vae.config.latents_mean).view(1, self.vae.config.z_dim, 1, 1, 1)).to(device)
|
671 |
+
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(device)
|
672 |
+
|
673 |
+
control_image = retrieve_latents(self.vae.encode(control_image), generator=generator)
|
674 |
+
control_image = (control_image - latents_mean) * latents_std
|
675 |
+
|
676 |
+
control_image = control_image.permute(0, 2, 1, 3, 4) # torch.Size([1, 1, 16, height_ori//8, width_ori//8])
|
677 |
+
|
678 |
+
# pack
|
679 |
+
control_image = self._pack_latents(
|
680 |
+
control_image,
|
681 |
+
batch_size=control_image.shape[0],
|
682 |
+
num_channels_latents=num_channels_latents,
|
683 |
+
height=control_image.shape[3],
|
684 |
+
width=control_image.shape[4],
|
685 |
+
)
|
686 |
+
|
687 |
+
# 4. Prepare latent variables
|
688 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
689 |
+
latents = self.prepare_latents(
|
690 |
+
batch_size * num_images_per_prompt,
|
691 |
+
num_channels_latents,
|
692 |
+
height,
|
693 |
+
width,
|
694 |
+
prompt_embeds.dtype,
|
695 |
+
device,
|
696 |
+
generator,
|
697 |
+
latents,
|
698 |
+
)
|
699 |
+
img_shapes = [(1, height // self.vae_scale_factor // 2, width // self.vae_scale_factor // 2)] * batch_size
|
700 |
+
|
701 |
+
# 5. Prepare timesteps
|
702 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
|
703 |
+
image_seq_len = latents.shape[1]
|
704 |
+
mu = calculate_shift(
|
705 |
+
image_seq_len,
|
706 |
+
self.scheduler.config.get("base_image_seq_len", 256),
|
707 |
+
self.scheduler.config.get("max_image_seq_len", 4096),
|
708 |
+
self.scheduler.config.get("base_shift", 0.5),
|
709 |
+
self.scheduler.config.get("max_shift", 1.15),
|
710 |
+
)
|
711 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
712 |
+
self.scheduler,
|
713 |
+
num_inference_steps,
|
714 |
+
device,
|
715 |
+
sigmas=sigmas,
|
716 |
+
mu=mu,
|
717 |
+
)
|
718 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
719 |
+
self._num_timesteps = len(timesteps)
|
720 |
+
|
721 |
+
controlnet_keep = []
|
722 |
+
for i in range(len(timesteps)):
|
723 |
+
keeps = [
|
724 |
+
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
|
725 |
+
for s, e in zip(control_guidance_start, control_guidance_end)
|
726 |
+
]
|
727 |
+
controlnet_keep.append(keeps[0] if isinstance(self.controlnet, QwenImageControlNetModel) else keeps)
|
728 |
+
|
729 |
+
# handle guidance
|
730 |
+
if self.transformer.config.guidance_embeds:
|
731 |
+
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
|
732 |
+
guidance = guidance.expand(latents.shape[0])
|
733 |
+
else:
|
734 |
+
guidance = None
|
735 |
+
|
736 |
+
if self.attention_kwargs is None:
|
737 |
+
self._attention_kwargs = {}
|
738 |
+
|
739 |
+
# 6. Denoising loop
|
740 |
+
self.scheduler.set_begin_index(0)
|
741 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
742 |
+
for i, t in enumerate(timesteps):
|
743 |
+
if self.interrupt:
|
744 |
+
continue
|
745 |
+
|
746 |
+
self._current_timestep = t
|
747 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
748 |
+
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
749 |
+
|
750 |
+
if isinstance(controlnet_keep[i], list):
|
751 |
+
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
|
752 |
+
else:
|
753 |
+
controlnet_cond_scale = controlnet_conditioning_scale
|
754 |
+
if isinstance(controlnet_cond_scale, list):
|
755 |
+
controlnet_cond_scale = controlnet_cond_scale[0]
|
756 |
+
cond_scale = controlnet_cond_scale * controlnet_keep[i]
|
757 |
+
|
758 |
+
# controlnet
|
759 |
+
controlnet_block_samples = self.controlnet(
|
760 |
+
hidden_states=latents,
|
761 |
+
controlnet_cond=control_image.to(dtype=latents.dtype, device=device),
|
762 |
+
conditioning_scale=cond_scale,
|
763 |
+
timestep=timestep / 1000,
|
764 |
+
encoder_hidden_states=prompt_embeds,
|
765 |
+
encoder_hidden_states_mask=prompt_embeds_mask,
|
766 |
+
img_shapes=img_shapes,
|
767 |
+
txt_seq_lens=prompt_embeds_mask.sum(dim=1).tolist(),
|
768 |
+
return_dict=False,
|
769 |
+
)
|
770 |
+
|
771 |
+
with self.transformer.cache_context("cond"):
|
772 |
+
noise_pred = self.transformer(
|
773 |
+
hidden_states=latents,
|
774 |
+
timestep=timestep / 1000,
|
775 |
+
encoder_hidden_states=prompt_embeds,
|
776 |
+
encoder_hidden_states_mask=prompt_embeds_mask,
|
777 |
+
img_shapes=img_shapes,
|
778 |
+
txt_seq_lens=prompt_embeds_mask.sum(dim=1).tolist(),
|
779 |
+
controlnet_block_samples=controlnet_block_samples,
|
780 |
+
attention_kwargs=self.attention_kwargs,
|
781 |
+
return_dict=False,
|
782 |
+
)[0]
|
783 |
+
|
784 |
+
if do_true_cfg:
|
785 |
+
with self.transformer.cache_context("uncond"):
|
786 |
+
neg_noise_pred = self.transformer(
|
787 |
+
hidden_states=latents,
|
788 |
+
timestep=timestep / 1000,
|
789 |
+
guidance=guidance,
|
790 |
+
encoder_hidden_states_mask=negative_prompt_embeds_mask,
|
791 |
+
encoder_hidden_states=negative_prompt_embeds,
|
792 |
+
img_shapes=img_shapes,
|
793 |
+
txt_seq_lens=negative_prompt_embeds_mask.sum(dim=1).tolist(),
|
794 |
+
controlnet_block_samples=controlnet_block_samples,
|
795 |
+
attention_kwargs=self.attention_kwargs,
|
796 |
+
return_dict=False,
|
797 |
+
)[0]
|
798 |
+
comb_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
|
799 |
+
|
800 |
+
cond_norm = torch.norm(noise_pred, dim=-1, keepdim=True)
|
801 |
+
noise_norm = torch.norm(comb_pred, dim=-1, keepdim=True)
|
802 |
+
noise_pred = comb_pred * (cond_norm / noise_norm)
|
803 |
+
|
804 |
+
# compute the previous noisy sample x_t -> x_t-1
|
805 |
+
latents_dtype = latents.dtype
|
806 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
807 |
+
|
808 |
+
if latents.dtype != latents_dtype:
|
809 |
+
if torch.backends.mps.is_available():
|
810 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
811 |
+
latents = latents.to(latents_dtype)
|
812 |
+
|
813 |
+
if callback_on_step_end is not None:
|
814 |
+
callback_kwargs = {}
|
815 |
+
for k in callback_on_step_end_tensor_inputs:
|
816 |
+
callback_kwargs[k] = locals()[k]
|
817 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
818 |
+
|
819 |
+
latents = callback_outputs.pop("latents", latents)
|
820 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
821 |
+
|
822 |
+
# call the callback, if provided
|
823 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
824 |
+
progress_bar.update()
|
825 |
+
|
826 |
+
if XLA_AVAILABLE:
|
827 |
+
xm.mark_step()
|
828 |
+
|
829 |
+
self._current_timestep = None
|
830 |
+
if output_type == "latent":
|
831 |
+
image = latents
|
832 |
+
else:
|
833 |
+
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
834 |
+
latents = latents.to(self.vae.dtype)
|
835 |
+
latents_mean = (
|
836 |
+
torch.tensor(self.vae.config.latents_mean)
|
837 |
+
.view(1, self.vae.config.z_dim, 1, 1, 1)
|
838 |
+
.to(latents.device, latents.dtype)
|
839 |
+
)
|
840 |
+
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
|
841 |
+
latents.device, latents.dtype
|
842 |
+
)
|
843 |
+
latents = latents / latents_std + latents_mean
|
844 |
+
image = self.vae.decode(latents, return_dict=False)[0][:, :, 0]
|
845 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
846 |
+
|
847 |
+
# Offload all models
|
848 |
+
self.maybe_free_model_hooks()
|
849 |
+
|
850 |
+
if not return_dict:
|
851 |
+
return (image,)
|
852 |
+
|
853 |
+
return QwenImagePipelineOutput(images=image)
|
transformer_qwenimage.py
ADDED
@@ -0,0 +1,636 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2025 Qwen-Image Team, The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
import math
|
17 |
+
import numpy as np
|
18 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.nn as nn
|
22 |
+
import torch.nn.functional as F
|
23 |
+
|
24 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
25 |
+
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
|
26 |
+
from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
|
27 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
28 |
+
from diffusers.models.attention import FeedForward
|
29 |
+
from diffusers.models.attention_dispatch import dispatch_attention_fn
|
30 |
+
from diffusers.models.attention_processor import Attention
|
31 |
+
from diffusers.models.cache_utils import CacheMixin
|
32 |
+
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
33 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
34 |
+
from diffusers.models.modeling_utils import ModelMixin
|
35 |
+
from diffusers.models.normalization import AdaLayerNormContinuous, RMSNorm
|
36 |
+
|
37 |
+
|
38 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
39 |
+
|
40 |
+
|
41 |
+
def get_timestep_embedding(
|
42 |
+
timesteps: torch.Tensor,
|
43 |
+
embedding_dim: int,
|
44 |
+
flip_sin_to_cos: bool = False,
|
45 |
+
downscale_freq_shift: float = 1,
|
46 |
+
scale: float = 1,
|
47 |
+
max_period: int = 10000,
|
48 |
+
) -> torch.Tensor:
|
49 |
+
"""
|
50 |
+
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
|
51 |
+
|
52 |
+
Args
|
53 |
+
timesteps (torch.Tensor):
|
54 |
+
a 1-D Tensor of N indices, one per batch element. These may be fractional.
|
55 |
+
embedding_dim (int):
|
56 |
+
the dimension of the output.
|
57 |
+
flip_sin_to_cos (bool):
|
58 |
+
Whether the embedding order should be `cos, sin` (if True) or `sin, cos` (if False)
|
59 |
+
downscale_freq_shift (float):
|
60 |
+
Controls the delta between frequencies between dimensions
|
61 |
+
scale (float):
|
62 |
+
Scaling factor applied to the embeddings.
|
63 |
+
max_period (int):
|
64 |
+
Controls the maximum frequency of the embeddings
|
65 |
+
Returns
|
66 |
+
torch.Tensor: an [N x dim] Tensor of positional embeddings.
|
67 |
+
"""
|
68 |
+
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
|
69 |
+
|
70 |
+
half_dim = embedding_dim // 2
|
71 |
+
exponent = -math.log(max_period) * torch.arange(
|
72 |
+
start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
|
73 |
+
)
|
74 |
+
exponent = exponent / (half_dim - downscale_freq_shift)
|
75 |
+
|
76 |
+
emb = torch.exp(exponent).to(timesteps.dtype)
|
77 |
+
emb = timesteps[:, None].float() * emb[None, :]
|
78 |
+
|
79 |
+
# scale embeddings
|
80 |
+
emb = scale * emb
|
81 |
+
|
82 |
+
# concat sine and cosine embeddings
|
83 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
|
84 |
+
|
85 |
+
# flip sine and cosine embeddings
|
86 |
+
if flip_sin_to_cos:
|
87 |
+
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)
|
88 |
+
|
89 |
+
# zero pad
|
90 |
+
if embedding_dim % 2 == 1:
|
91 |
+
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
|
92 |
+
return emb
|
93 |
+
|
94 |
+
|
95 |
+
def apply_rotary_emb_qwen(
|
96 |
+
x: torch.Tensor,
|
97 |
+
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
|
98 |
+
use_real: bool = True,
|
99 |
+
use_real_unbind_dim: int = -1,
|
100 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
101 |
+
"""
|
102 |
+
Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
|
103 |
+
to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
|
104 |
+
reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
|
105 |
+
tensors contain rotary embeddings and are returned as real tensors.
|
106 |
+
|
107 |
+
Args:
|
108 |
+
x (`torch.Tensor`):
|
109 |
+
Query or key tensor to apply rotary embeddings. [B, S, H, D] xk (torch.Tensor): Key tensor to apply
|
110 |
+
freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)
|
111 |
+
|
112 |
+
Returns:
|
113 |
+
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
|
114 |
+
"""
|
115 |
+
if use_real:
|
116 |
+
cos, sin = freqs_cis # [S, D]
|
117 |
+
cos = cos[None, None]
|
118 |
+
sin = sin[None, None]
|
119 |
+
cos, sin = cos.to(x.device), sin.to(x.device)
|
120 |
+
|
121 |
+
if use_real_unbind_dim == -1:
|
122 |
+
# Used for flux, cogvideox, hunyuan-dit
|
123 |
+
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
|
124 |
+
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
|
125 |
+
elif use_real_unbind_dim == -2:
|
126 |
+
# Used for Stable Audio, OmniGen, CogView4 and Cosmos
|
127 |
+
x_real, x_imag = x.reshape(*x.shape[:-1], 2, -1).unbind(-2) # [B, S, H, D//2]
|
128 |
+
x_rotated = torch.cat([-x_imag, x_real], dim=-1)
|
129 |
+
else:
|
130 |
+
raise ValueError(f"`use_real_unbind_dim={use_real_unbind_dim}` but should be -1 or -2.")
|
131 |
+
|
132 |
+
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
|
133 |
+
|
134 |
+
return out
|
135 |
+
else:
|
136 |
+
x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
|
137 |
+
freqs_cis = freqs_cis.unsqueeze(1)
|
138 |
+
x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3)
|
139 |
+
|
140 |
+
return x_out.type_as(x)
|
141 |
+
|
142 |
+
|
143 |
+
class QwenTimestepProjEmbeddings(nn.Module):
|
144 |
+
def __init__(self, embedding_dim):
|
145 |
+
super().__init__()
|
146 |
+
|
147 |
+
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0, scale=1000)
|
148 |
+
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
149 |
+
|
150 |
+
def forward(self, timestep, hidden_states):
|
151 |
+
timesteps_proj = self.time_proj(timestep)
|
152 |
+
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_states.dtype)) # (N, D)
|
153 |
+
|
154 |
+
conditioning = timesteps_emb
|
155 |
+
|
156 |
+
return conditioning
|
157 |
+
|
158 |
+
|
159 |
+
class QwenEmbedRope(nn.Module):
|
160 |
+
def __init__(self, theta: int, axes_dim: List[int], scale_rope=False):
|
161 |
+
super().__init__()
|
162 |
+
self.theta = theta
|
163 |
+
self.axes_dim = axes_dim
|
164 |
+
pos_index = torch.arange(1024)
|
165 |
+
neg_index = torch.arange(1024).flip(0) * -1 - 1
|
166 |
+
self.pos_freqs = torch.cat(
|
167 |
+
[
|
168 |
+
self.rope_params(pos_index, self.axes_dim[0], self.theta),
|
169 |
+
self.rope_params(pos_index, self.axes_dim[1], self.theta),
|
170 |
+
self.rope_params(pos_index, self.axes_dim[2], self.theta),
|
171 |
+
],
|
172 |
+
dim=1,
|
173 |
+
)
|
174 |
+
self.neg_freqs = torch.cat(
|
175 |
+
[
|
176 |
+
self.rope_params(neg_index, self.axes_dim[0], self.theta),
|
177 |
+
self.rope_params(neg_index, self.axes_dim[1], self.theta),
|
178 |
+
self.rope_params(neg_index, self.axes_dim[2], self.theta),
|
179 |
+
],
|
180 |
+
dim=1,
|
181 |
+
)
|
182 |
+
self.rope_cache = {}
|
183 |
+
|
184 |
+
# 是否使用 scale rope
|
185 |
+
self.scale_rope = scale_rope
|
186 |
+
|
187 |
+
def rope_params(self, index, dim, theta=10000):
|
188 |
+
"""
|
189 |
+
Args:
|
190 |
+
index: [0, 1, 2, 3] 1D Tensor representing the position index of the token
|
191 |
+
"""
|
192 |
+
assert dim % 2 == 0
|
193 |
+
freqs = torch.outer(index, 1.0 / torch.pow(theta, torch.arange(0, dim, 2).to(torch.float32).div(dim)))
|
194 |
+
freqs = torch.polar(torch.ones_like(freqs), freqs)
|
195 |
+
return freqs
|
196 |
+
|
197 |
+
def forward(self, video_fhw, txt_seq_lens, device):
|
198 |
+
"""
|
199 |
+
Args: video_fhw: [frame, height, width] a list of 3 integers representing the shape of the video Args:
|
200 |
+
txt_length: [bs] a list of 1 integers representing the length of the text
|
201 |
+
"""
|
202 |
+
if self.pos_freqs.device != device:
|
203 |
+
self.pos_freqs = self.pos_freqs.to(device)
|
204 |
+
self.neg_freqs = self.neg_freqs.to(device)
|
205 |
+
|
206 |
+
if isinstance(video_fhw, list):
|
207 |
+
video_fhw = video_fhw[0]
|
208 |
+
frame, height, width = video_fhw
|
209 |
+
rope_key = f"{frame}_{height}_{width}"
|
210 |
+
|
211 |
+
if rope_key not in self.rope_cache:
|
212 |
+
seq_lens = frame * height * width
|
213 |
+
freqs_pos = self.pos_freqs.split([x // 2 for x in self.axes_dim], dim=1)
|
214 |
+
freqs_neg = self.neg_freqs.split([x // 2 for x in self.axes_dim], dim=1)
|
215 |
+
freqs_frame = freqs_pos[0][:frame].view(frame, 1, 1, -1).expand(frame, height, width, -1)
|
216 |
+
if self.scale_rope:
|
217 |
+
freqs_height = torch.cat([freqs_neg[1][-(height - height // 2) :], freqs_pos[1][: height // 2]], dim=0)
|
218 |
+
freqs_height = freqs_height.view(1, height, 1, -1).expand(frame, height, width, -1)
|
219 |
+
freqs_width = torch.cat([freqs_neg[2][-(width - width // 2) :], freqs_pos[2][: width // 2]], dim=0)
|
220 |
+
freqs_width = freqs_width.view(1, 1, width, -1).expand(frame, height, width, -1)
|
221 |
+
|
222 |
+
else:
|
223 |
+
freqs_height = freqs_pos[1][:height].view(1, height, 1, -1).expand(frame, height, width, -1)
|
224 |
+
freqs_width = freqs_pos[2][:width].view(1, 1, width, -1).expand(frame, height, width, -1)
|
225 |
+
|
226 |
+
freqs = torch.cat([freqs_frame, freqs_height, freqs_width], dim=-1).reshape(seq_lens, -1)
|
227 |
+
self.rope_cache[rope_key] = freqs.clone().contiguous()
|
228 |
+
vid_freqs = self.rope_cache[rope_key]
|
229 |
+
|
230 |
+
if self.scale_rope:
|
231 |
+
max_vid_index = max(height // 2, width // 2)
|
232 |
+
else:
|
233 |
+
max_vid_index = max(height, width)
|
234 |
+
|
235 |
+
max_len = max(txt_seq_lens)
|
236 |
+
txt_freqs = self.pos_freqs[max_vid_index : max_vid_index + max_len, ...]
|
237 |
+
|
238 |
+
return vid_freqs, txt_freqs
|
239 |
+
|
240 |
+
|
241 |
+
class QwenDoubleStreamAttnProcessor2_0:
|
242 |
+
"""
|
243 |
+
Attention processor for Qwen double-stream architecture, matching DoubleStreamLayerMegatron logic. This processor
|
244 |
+
implements joint attention computation where text and image streams are processed together.
|
245 |
+
"""
|
246 |
+
|
247 |
+
_attention_backend = None
|
248 |
+
|
249 |
+
def __init__(self):
|
250 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
251 |
+
raise ImportError(
|
252 |
+
"QwenDoubleStreamAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
253 |
+
)
|
254 |
+
|
255 |
+
def __call__(
|
256 |
+
self,
|
257 |
+
attn: Attention,
|
258 |
+
hidden_states: torch.FloatTensor, # Image stream
|
259 |
+
encoder_hidden_states: torch.FloatTensor = None, # Text stream
|
260 |
+
encoder_hidden_states_mask: torch.FloatTensor = None,
|
261 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
262 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
263 |
+
) -> torch.FloatTensor:
|
264 |
+
if encoder_hidden_states is None:
|
265 |
+
raise ValueError("QwenDoubleStreamAttnProcessor2_0 requires encoder_hidden_states (text stream)")
|
266 |
+
|
267 |
+
seq_txt = encoder_hidden_states.shape[1]
|
268 |
+
|
269 |
+
# Compute QKV for image stream (sample projections)
|
270 |
+
img_query = attn.to_q(hidden_states)
|
271 |
+
img_key = attn.to_k(hidden_states)
|
272 |
+
img_value = attn.to_v(hidden_states)
|
273 |
+
|
274 |
+
# Compute QKV for text stream (context projections)
|
275 |
+
txt_query = attn.add_q_proj(encoder_hidden_states)
|
276 |
+
txt_key = attn.add_k_proj(encoder_hidden_states)
|
277 |
+
txt_value = attn.add_v_proj(encoder_hidden_states)
|
278 |
+
|
279 |
+
# Reshape for multi-head attention
|
280 |
+
img_query = img_query.unflatten(-1, (attn.heads, -1))
|
281 |
+
img_key = img_key.unflatten(-1, (attn.heads, -1))
|
282 |
+
img_value = img_value.unflatten(-1, (attn.heads, -1))
|
283 |
+
|
284 |
+
txt_query = txt_query.unflatten(-1, (attn.heads, -1))
|
285 |
+
txt_key = txt_key.unflatten(-1, (attn.heads, -1))
|
286 |
+
txt_value = txt_value.unflatten(-1, (attn.heads, -1))
|
287 |
+
|
288 |
+
# Apply QK normalization
|
289 |
+
if attn.norm_q is not None:
|
290 |
+
img_query = attn.norm_q(img_query)
|
291 |
+
if attn.norm_k is not None:
|
292 |
+
img_key = attn.norm_k(img_key)
|
293 |
+
if attn.norm_added_q is not None:
|
294 |
+
txt_query = attn.norm_added_q(txt_query)
|
295 |
+
if attn.norm_added_k is not None:
|
296 |
+
txt_key = attn.norm_added_k(txt_key)
|
297 |
+
|
298 |
+
# Apply RoPE
|
299 |
+
if image_rotary_emb is not None:
|
300 |
+
img_freqs, txt_freqs = image_rotary_emb
|
301 |
+
img_query = apply_rotary_emb_qwen(img_query, img_freqs, use_real=False)
|
302 |
+
img_key = apply_rotary_emb_qwen(img_key, img_freqs, use_real=False)
|
303 |
+
txt_query = apply_rotary_emb_qwen(txt_query, txt_freqs, use_real=False)
|
304 |
+
txt_key = apply_rotary_emb_qwen(txt_key, txt_freqs, use_real=False)
|
305 |
+
|
306 |
+
# Concatenate for joint attention
|
307 |
+
# Order: [text, image]
|
308 |
+
joint_query = torch.cat([txt_query, img_query], dim=1)
|
309 |
+
joint_key = torch.cat([txt_key, img_key], dim=1)
|
310 |
+
joint_value = torch.cat([txt_value, img_value], dim=1)
|
311 |
+
|
312 |
+
# Compute joint attention
|
313 |
+
joint_hidden_states = dispatch_attention_fn(
|
314 |
+
joint_query,
|
315 |
+
joint_key,
|
316 |
+
joint_value,
|
317 |
+
attn_mask=attention_mask,
|
318 |
+
dropout_p=0.0,
|
319 |
+
is_causal=False,
|
320 |
+
backend=self._attention_backend,
|
321 |
+
)
|
322 |
+
|
323 |
+
# Reshape back
|
324 |
+
joint_hidden_states = joint_hidden_states.flatten(2, 3)
|
325 |
+
joint_hidden_states = joint_hidden_states.to(joint_query.dtype)
|
326 |
+
|
327 |
+
# Split attention outputs back
|
328 |
+
txt_attn_output = joint_hidden_states[:, :seq_txt, :] # Text part
|
329 |
+
img_attn_output = joint_hidden_states[:, seq_txt:, :] # Image part
|
330 |
+
|
331 |
+
# Apply output projections
|
332 |
+
img_attn_output = attn.to_out[0](img_attn_output)
|
333 |
+
if len(attn.to_out) > 1:
|
334 |
+
img_attn_output = attn.to_out[1](img_attn_output) # dropout
|
335 |
+
|
336 |
+
txt_attn_output = attn.to_add_out(txt_attn_output)
|
337 |
+
|
338 |
+
return img_attn_output, txt_attn_output
|
339 |
+
|
340 |
+
|
341 |
+
@maybe_allow_in_graph
|
342 |
+
class QwenImageTransformerBlock(nn.Module):
|
343 |
+
def __init__(
|
344 |
+
self, dim: int, num_attention_heads: int, attention_head_dim: int, qk_norm: str = "rms_norm", eps: float = 1e-6
|
345 |
+
):
|
346 |
+
super().__init__()
|
347 |
+
|
348 |
+
self.dim = dim
|
349 |
+
self.num_attention_heads = num_attention_heads
|
350 |
+
self.attention_head_dim = attention_head_dim
|
351 |
+
|
352 |
+
# Image processing modules
|
353 |
+
self.img_mod = nn.Sequential(
|
354 |
+
nn.SiLU(),
|
355 |
+
nn.Linear(dim, 6 * dim, bias=True), # For scale, shift, gate for norm1 and norm2
|
356 |
+
)
|
357 |
+
self.img_norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
|
358 |
+
self.attn = Attention(
|
359 |
+
query_dim=dim,
|
360 |
+
cross_attention_dim=None, # Enable cross attention for joint computation
|
361 |
+
added_kv_proj_dim=dim, # Enable added KV projections for text stream
|
362 |
+
dim_head=attention_head_dim,
|
363 |
+
heads=num_attention_heads,
|
364 |
+
out_dim=dim,
|
365 |
+
context_pre_only=False,
|
366 |
+
bias=True,
|
367 |
+
processor=QwenDoubleStreamAttnProcessor2_0(),
|
368 |
+
qk_norm=qk_norm,
|
369 |
+
eps=eps,
|
370 |
+
)
|
371 |
+
self.img_norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
|
372 |
+
self.img_mlp = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
373 |
+
|
374 |
+
# Text processing modules
|
375 |
+
self.txt_mod = nn.Sequential(
|
376 |
+
nn.SiLU(),
|
377 |
+
nn.Linear(dim, 6 * dim, bias=True), # For scale, shift, gate for norm1 and norm2
|
378 |
+
)
|
379 |
+
self.txt_norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
|
380 |
+
# Text doesn't need separate attention - it's handled by img_attn joint computation
|
381 |
+
self.txt_norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
|
382 |
+
self.txt_mlp = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
383 |
+
|
384 |
+
def _modulate(self, x, mod_params):
|
385 |
+
"""Apply modulation to input tensor"""
|
386 |
+
shift, scale, gate = mod_params.chunk(3, dim=-1)
|
387 |
+
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1), gate.unsqueeze(1)
|
388 |
+
|
389 |
+
def forward(
|
390 |
+
self,
|
391 |
+
hidden_states: torch.Tensor,
|
392 |
+
encoder_hidden_states: torch.Tensor,
|
393 |
+
encoder_hidden_states_mask: torch.Tensor,
|
394 |
+
temb: torch.Tensor,
|
395 |
+
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
396 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
397 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
398 |
+
# Get modulation parameters for both streams
|
399 |
+
img_mod_params = self.img_mod(temb) # [B, 6*dim]
|
400 |
+
txt_mod_params = self.txt_mod(temb) # [B, 6*dim]
|
401 |
+
|
402 |
+
# Split modulation parameters for norm1 and norm2
|
403 |
+
img_mod1, img_mod2 = img_mod_params.chunk(2, dim=-1) # Each [B, 3*dim]
|
404 |
+
txt_mod1, txt_mod2 = txt_mod_params.chunk(2, dim=-1) # Each [B, 3*dim]
|
405 |
+
|
406 |
+
# Process image stream - norm1 + modulation
|
407 |
+
img_normed = self.img_norm1(hidden_states)
|
408 |
+
img_modulated, img_gate1 = self._modulate(img_normed, img_mod1)
|
409 |
+
|
410 |
+
# Process text stream - norm1 + modulation
|
411 |
+
txt_normed = self.txt_norm1(encoder_hidden_states)
|
412 |
+
txt_modulated, txt_gate1 = self._modulate(txt_normed, txt_mod1)
|
413 |
+
|
414 |
+
# Use QwenAttnProcessor2_0 for joint attention computation
|
415 |
+
# This directly implements the DoubleStreamLayerMegatron logic:
|
416 |
+
# 1. Computes QKV for both streams
|
417 |
+
# 2. Applies QK normalization and RoPE
|
418 |
+
# 3. Concatenates and runs joint attention
|
419 |
+
# 4. Splits results back to separate streams
|
420 |
+
joint_attention_kwargs = joint_attention_kwargs or {}
|
421 |
+
attn_output = self.attn(
|
422 |
+
hidden_states=img_modulated, # Image stream (will be processed as "sample")
|
423 |
+
encoder_hidden_states=txt_modulated, # Text stream (will be processed as "context")
|
424 |
+
encoder_hidden_states_mask=encoder_hidden_states_mask,
|
425 |
+
image_rotary_emb=image_rotary_emb,
|
426 |
+
**joint_attention_kwargs,
|
427 |
+
)
|
428 |
+
|
429 |
+
# QwenAttnProcessor2_0 returns (img_output, txt_output) when encoder_hidden_states is provided
|
430 |
+
img_attn_output, txt_attn_output = attn_output
|
431 |
+
|
432 |
+
# Apply attention gates and add residual (like in Megatron)
|
433 |
+
hidden_states = hidden_states + img_gate1 * img_attn_output
|
434 |
+
encoder_hidden_states = encoder_hidden_states + txt_gate1 * txt_attn_output
|
435 |
+
|
436 |
+
# Process image stream - norm2 + MLP
|
437 |
+
img_normed2 = self.img_norm2(hidden_states)
|
438 |
+
img_modulated2, img_gate2 = self._modulate(img_normed2, img_mod2)
|
439 |
+
img_mlp_output = self.img_mlp(img_modulated2)
|
440 |
+
hidden_states = hidden_states + img_gate2 * img_mlp_output
|
441 |
+
|
442 |
+
# Process text stream - norm2 + MLP
|
443 |
+
txt_normed2 = self.txt_norm2(encoder_hidden_states)
|
444 |
+
txt_modulated2, txt_gate2 = self._modulate(txt_normed2, txt_mod2)
|
445 |
+
txt_mlp_output = self.txt_mlp(txt_modulated2)
|
446 |
+
encoder_hidden_states = encoder_hidden_states + txt_gate2 * txt_mlp_output
|
447 |
+
|
448 |
+
# Clip to prevent overflow for fp16
|
449 |
+
if encoder_hidden_states.dtype == torch.float16:
|
450 |
+
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
|
451 |
+
if hidden_states.dtype == torch.float16:
|
452 |
+
hidden_states = hidden_states.clip(-65504, 65504)
|
453 |
+
|
454 |
+
return encoder_hidden_states, hidden_states
|
455 |
+
|
456 |
+
|
457 |
+
class QwenImageTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, CacheMixin):
|
458 |
+
"""
|
459 |
+
The Transformer model introduced in Qwen.
|
460 |
+
|
461 |
+
Args:
|
462 |
+
patch_size (`int`, defaults to `2`):
|
463 |
+
Patch size to turn the input data into small patches.
|
464 |
+
in_channels (`int`, defaults to `64`):
|
465 |
+
The number of channels in the input.
|
466 |
+
out_channels (`int`, *optional*, defaults to `None`):
|
467 |
+
The number of channels in the output. If not specified, it defaults to `in_channels`.
|
468 |
+
num_layers (`int`, defaults to `60`):
|
469 |
+
The number of layers of dual stream DiT blocks to use.
|
470 |
+
attention_head_dim (`int`, defaults to `128`):
|
471 |
+
The number of dimensions to use for each attention head.
|
472 |
+
num_attention_heads (`int`, defaults to `24`):
|
473 |
+
The number of attention heads to use.
|
474 |
+
joint_attention_dim (`int`, defaults to `3584`):
|
475 |
+
The number of dimensions to use for the joint attention (embedding/channel dimension of
|
476 |
+
`encoder_hidden_states`).
|
477 |
+
guidance_embeds (`bool`, defaults to `False`):
|
478 |
+
Whether to use guidance embeddings for guidance-distilled variant of the model.
|
479 |
+
axes_dims_rope (`Tuple[int]`, defaults to `(16, 56, 56)`):
|
480 |
+
The dimensions to use for the rotary positional embeddings.
|
481 |
+
"""
|
482 |
+
|
483 |
+
_supports_gradient_checkpointing = True
|
484 |
+
_no_split_modules = ["QwenImageTransformerBlock"]
|
485 |
+
_skip_layerwise_casting_patterns = ["pos_embed", "norm"]
|
486 |
+
|
487 |
+
@register_to_config
|
488 |
+
def __init__(
|
489 |
+
self,
|
490 |
+
patch_size: int = 2,
|
491 |
+
in_channels: int = 64,
|
492 |
+
out_channels: Optional[int] = 16,
|
493 |
+
num_layers: int = 60,
|
494 |
+
attention_head_dim: int = 128,
|
495 |
+
num_attention_heads: int = 24,
|
496 |
+
joint_attention_dim: int = 3584,
|
497 |
+
guidance_embeds: bool = False, # TODO: this should probably be removed
|
498 |
+
axes_dims_rope: Tuple[int, int, int] = (16, 56, 56),
|
499 |
+
):
|
500 |
+
super().__init__()
|
501 |
+
self.out_channels = out_channels or in_channels
|
502 |
+
self.inner_dim = num_attention_heads * attention_head_dim
|
503 |
+
|
504 |
+
self.pos_embed = QwenEmbedRope(theta=10000, axes_dim=list(axes_dims_rope), scale_rope=True)
|
505 |
+
|
506 |
+
self.time_text_embed = QwenTimestepProjEmbeddings(embedding_dim=self.inner_dim)
|
507 |
+
|
508 |
+
self.txt_norm = RMSNorm(joint_attention_dim, eps=1e-6)
|
509 |
+
|
510 |
+
self.img_in = nn.Linear(in_channels, self.inner_dim)
|
511 |
+
self.txt_in = nn.Linear(joint_attention_dim, self.inner_dim)
|
512 |
+
|
513 |
+
self.transformer_blocks = nn.ModuleList(
|
514 |
+
[
|
515 |
+
QwenImageTransformerBlock(
|
516 |
+
dim=self.inner_dim,
|
517 |
+
num_attention_heads=num_attention_heads,
|
518 |
+
attention_head_dim=attention_head_dim,
|
519 |
+
)
|
520 |
+
for _ in range(num_layers)
|
521 |
+
]
|
522 |
+
)
|
523 |
+
|
524 |
+
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
|
525 |
+
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
|
526 |
+
|
527 |
+
self.gradient_checkpointing = False
|
528 |
+
|
529 |
+
def forward(
|
530 |
+
self,
|
531 |
+
hidden_states: torch.Tensor,
|
532 |
+
encoder_hidden_states: torch.Tensor = None,
|
533 |
+
encoder_hidden_states_mask: torch.Tensor = None,
|
534 |
+
timestep: torch.LongTensor = None,
|
535 |
+
img_shapes: Optional[List[Tuple[int, int, int]]] = None,
|
536 |
+
txt_seq_lens: Optional[List[int]] = None,
|
537 |
+
guidance: torch.Tensor = None, # TODO: this should probably be removed
|
538 |
+
attention_kwargs: Optional[Dict[str, Any]] = None,
|
539 |
+
controlnet_block_samples = None,
|
540 |
+
return_dict: bool = True,
|
541 |
+
) -> Union[torch.Tensor, Transformer2DModelOutput]:
|
542 |
+
"""
|
543 |
+
The [`QwenTransformer2DModel`] forward method.
|
544 |
+
|
545 |
+
Args:
|
546 |
+
hidden_states (`torch.Tensor` of shape `(batch_size, image_sequence_length, in_channels)`):
|
547 |
+
Input `hidden_states`.
|
548 |
+
encoder_hidden_states (`torch.Tensor` of shape `(batch_size, text_sequence_length, joint_attention_dim)`):
|
549 |
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
550 |
+
encoder_hidden_states_mask (`torch.Tensor` of shape `(batch_size, text_sequence_length)`):
|
551 |
+
Mask of the input conditions.
|
552 |
+
timestep ( `torch.LongTensor`):
|
553 |
+
Used to indicate denoising step.
|
554 |
+
attention_kwargs (`dict`, *optional*):
|
555 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
556 |
+
`self.processor` in
|
557 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
558 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
559 |
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
560 |
+
tuple.
|
561 |
+
|
562 |
+
Returns:
|
563 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
564 |
+
`tuple` where the first element is the sample tensor.
|
565 |
+
"""
|
566 |
+
if attention_kwargs is not None:
|
567 |
+
attention_kwargs = attention_kwargs.copy()
|
568 |
+
lora_scale = attention_kwargs.pop("scale", 1.0)
|
569 |
+
else:
|
570 |
+
lora_scale = 1.0
|
571 |
+
|
572 |
+
if USE_PEFT_BACKEND:
|
573 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
574 |
+
scale_lora_layers(self, lora_scale)
|
575 |
+
else:
|
576 |
+
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
|
577 |
+
logger.warning(
|
578 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
579 |
+
)
|
580 |
+
|
581 |
+
hidden_states = self.img_in(hidden_states)
|
582 |
+
|
583 |
+
timestep = timestep.to(hidden_states.dtype)
|
584 |
+
encoder_hidden_states = self.txt_norm(encoder_hidden_states)
|
585 |
+
encoder_hidden_states = self.txt_in(encoder_hidden_states)
|
586 |
+
|
587 |
+
if guidance is not None:
|
588 |
+
guidance = guidance.to(hidden_states.dtype) * 1000
|
589 |
+
|
590 |
+
temb = (
|
591 |
+
self.time_text_embed(timestep, hidden_states)
|
592 |
+
if guidance is None
|
593 |
+
else self.time_text_embed(timestep, guidance, hidden_states)
|
594 |
+
)
|
595 |
+
|
596 |
+
image_rotary_emb = self.pos_embed(img_shapes, txt_seq_lens, device=hidden_states.device)
|
597 |
+
|
598 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
599 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
600 |
+
encoder_hidden_states, hidden_states = self._gradient_checkpointing_func(
|
601 |
+
block,
|
602 |
+
hidden_states,
|
603 |
+
encoder_hidden_states,
|
604 |
+
encoder_hidden_states_mask,
|
605 |
+
temb,
|
606 |
+
image_rotary_emb,
|
607 |
+
)
|
608 |
+
|
609 |
+
else:
|
610 |
+
encoder_hidden_states, hidden_states = block(
|
611 |
+
hidden_states=hidden_states,
|
612 |
+
encoder_hidden_states=encoder_hidden_states,
|
613 |
+
encoder_hidden_states_mask=encoder_hidden_states_mask,
|
614 |
+
temb=temb,
|
615 |
+
image_rotary_emb=image_rotary_emb,
|
616 |
+
joint_attention_kwargs=attention_kwargs,
|
617 |
+
)
|
618 |
+
|
619 |
+
# controlnet residual
|
620 |
+
if controlnet_block_samples is not None:
|
621 |
+
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
|
622 |
+
interval_control = int(np.ceil(interval_control))
|
623 |
+
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
|
624 |
+
|
625 |
+
# Use only the image part (hidden_states) from the dual-stream blocks
|
626 |
+
hidden_states = self.norm_out(hidden_states, temb)
|
627 |
+
output = self.proj_out(hidden_states)
|
628 |
+
|
629 |
+
if USE_PEFT_BACKEND:
|
630 |
+
# remove `lora_scale` from each PEFT layer
|
631 |
+
unscale_lora_layers(self, lora_scale)
|
632 |
+
|
633 |
+
if not return_dict:
|
634 |
+
return (output,)
|
635 |
+
|
636 |
+
return Transformer2DModelOutput(sample=output)
|