Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,39 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
tags:
|
4 |
+
- int8
|
5 |
+
- Intel® Neural Compressor
|
6 |
+
- neural-compressor
|
7 |
+
- PostTrainingDynamic
|
8 |
+
datasets:
|
9 |
+
- cnn_dailymail
|
10 |
+
metrics:
|
11 |
+
- rougeLsum
|
12 |
---
|
13 |
+
|
14 |
+
# INT8 DistilBart finetuned on CNN DailyMail
|
15 |
+
|
16 |
+
### Post-training dynamic quantization
|
17 |
+
|
18 |
+
This is an INT8 PyTorch model quantized with [huggingface/optimum-intel](https://github.com/huggingface/optimum-intel) through the usage of [Intel® Neural Compressor](https://github.com/intel/neural-compressor).
|
19 |
+
|
20 |
+
The original fp32 model comes from the fine-tuned model [sysresearch101/t5-large-finetuned-xsum-cnn](https://huggingface.co/sysresearch101/t5-large-finetuned-xsum-cnn).
|
21 |
+
|
22 |
+
Below linear modules are fallbacked to fp32 for less than 1% relative accuracy loss:
|
23 |
+
|
24 |
+
|
25 |
+
### Evaluation result
|
26 |
+
|
27 |
+
| |INT8|FP32|
|
28 |
+
|---|:---:|:---:|
|
29 |
+
| **Accuracy (eval-rougeLsum)** | 41.4707 | 41.8117 |
|
30 |
+
| **Model size** |722M|1249M|
|
31 |
+
|
32 |
+
### Load with optimum:
|
33 |
+
|
34 |
+
```python
|
35 |
+
from optimum.intel.neural_compressor.quantization import IncQuantizedModelForSeq2SeqLM
|
36 |
+
int8_model = IncQuantizedModelForSeq2SeqLM.from_pretrained(
|
37 |
+
'Intel/bart-large-cnn-int8-dynamic',
|
38 |
+
)
|
39 |
+
```
|