xinhe commited on
Commit
bc95c30
·
1 Parent(s): ad28342

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +36 -0
README.md CHANGED
@@ -1,3 +1,39 @@
1
  ---
2
  license: mit
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ tags:
4
+ - int8
5
+ - Intel® Neural Compressor
6
+ - neural-compressor
7
+ - PostTrainingDynamic
8
+ datasets:
9
+ - cnn_dailymail
10
+ metrics:
11
+ - rougeLsum
12
  ---
13
+
14
+ # INT8 DistilBart finetuned on CNN DailyMail
15
+
16
+ ### Post-training dynamic quantization
17
+
18
+ This is an INT8 PyTorch model quantized with [huggingface/optimum-intel](https://github.com/huggingface/optimum-intel) through the usage of [Intel® Neural Compressor](https://github.com/intel/neural-compressor).
19
+
20
+ The original fp32 model comes from the fine-tuned model [sysresearch101/t5-large-finetuned-xsum-cnn](https://huggingface.co/sysresearch101/t5-large-finetuned-xsum-cnn).
21
+
22
+ Below linear modules are fallbacked to fp32 for less than 1% relative accuracy loss:
23
+
24
+
25
+ ### Evaluation result
26
+
27
+ | |INT8|FP32|
28
+ |---|:---:|:---:|
29
+ | **Accuracy (eval-rougeLsum)** | 41.4707 | 41.8117 |
30
+ | **Model size** |722M|1249M|
31
+
32
+ ### Load with optimum:
33
+
34
+ ```python
35
+ from optimum.intel.neural_compressor.quantization import IncQuantizedModelForSeq2SeqLM
36
+ int8_model = IncQuantizedModelForSeq2SeqLM.from_pretrained(
37
+ 'Intel/bart-large-cnn-int8-dynamic',
38
+ )
39
+ ```