--- license: mit tags: - int8 - IntelĀ® Neural Compressor - neural-compressor - PostTrainingDynamic datasets: - cnn_dailymail metrics: - rougeLsum --- # INT8 DistilBart finetuned on CNN DailyMail ### Post-training dynamic quantization This is an INT8 PyTorch model quantized with [huggingface/optimum-intel](https://github.com/huggingface/optimum-intel) through the usage of [IntelĀ® Neural Compressor](https://github.com/intel/neural-compressor). The original fp32 model comes from the fine-tuned model [sysresearch101/t5-large-finetuned-xsum-cnn](https://huggingface.co/sysresearch101/t5-large-finetuned-xsum-cnn). Below linear modules are fallbacked to fp32 for less than 1% relative accuracy loss: ### Evaluation result | |INT8|FP32| |---|:---:|:---:| | **Accuracy (eval-rougeLsum)** | 41.4707 | 41.8117 | | **Model size** |722M|1249M| ### Load with optimum: ```python from optimum.intel.neural_compressor.quantization import IncQuantizedModelForSeq2SeqLM int8_model = IncQuantizedModelForSeq2SeqLM.from_pretrained( 'Intel/bart-large-cnn-int8-dynamic', ) ```