File size: 1,885 Bytes
7777cef 3b8ff63 7777cef 3b8ff63 0912fc2 8e4dd31 0912fc2 d91f715 3b8ff63 e9f7319 3b8ff63 e9f7319 3b8ff63 e9f7319 3b8ff63 e9f7319 7777cef 3b8ff63 d91f715 3b8ff63 d91f715 3b8ff63 d91f715 3b8ff63 47326f3 a1e905c 47326f3 3b8ff63 d91f715 1282d76 d91f715 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
language:
- en
license: mit
tags:
- text-classfication
- int8
- Intel® Neural Compressor
- neural-compressor
- PostTrainingDynamic
- onnx
datasets:
- nyu-mll/glue
metrics:
- f1
model-index:
- name: camembert-base-mrpc-int8-dynamic
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: GLUE MRPC
type: glue
args: mrpc
metrics:
- type: f1
value: 0.8842832469775476
name: F1
---
# INT8 camembert-base-mrpc
## Post-training dynamic quantization
### PyTorch
This is an INT8 PyTorch model quantized with [Intel® Neural Compressor](https://github.com/intel/neural-compressor).
The original fp32 model comes from the fine-tuned model [camembert-base-mrpc](https://huggingface.co/Intel/camembert-base-mrpc).
The linear module **roberta.encoder.layer.6.attention.self.query** falls back to fp32 to meet the 1% relative accuracy loss.
#### Test result
| |INT8|FP32|
|---|:---:|:---:|
| **Accuracy (eval-f1)** |0.8843|0.8928|
| **Model size (MB)** |180|422|
#### Load with Intel® Neural Compressor:
```python
from optimum.intel import INCModelForSequenceClassification
model_id = "Intel/camembert-base-mrpc-int8-dynamic"
int8_model = INCModelForSequenceClassification.from_pretrained(model_id)
```
### ONNX
This is an INT8 ONNX model quantized with [Intel® Neural Compressor](https://github.com/intel/neural-compressor).
The original fp32 model comes from the fine-tuned model [camembert-base-mrpc](https://huggingface.co/Intel/camembert-base-mrpc).
#### Test result
| |INT8|FP32|
|---|:---:|:---:|
| **Accuracy (eval-f1)** |0.8819|0.8928|
| **Model size (MB)** |113|423|
#### Load ONNX model:
```python
from optimum.onnxruntime import ORTModelForSequenceClassification
model = ORTModelForSequenceClassification.from_pretrained('Intel/camembert-base-mrpc-int8-dynamic')
```
|