--- language: - en license: mit tags: - text-classfication - int8 - Intel® Neural Compressor - neural-compressor - PostTrainingDynamic - onnx datasets: - glue metrics: - f1 model-index: - name: camembert-base-mrpc-int8-dynamic results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: F1 type: f1 value: 0.8842832469775476 --- # INT8 camembert-base-mrpc ## Post-training dynamic quantization ### PyTorch This is an INT8 PyTorch model quantized with [Intel® Neural Compressor](https://github.com/intel/neural-compressor). The original fp32 model comes from the fine-tuned model [camembert-base-mrpc](https://huggingface.co/Intel/camembert-base-mrpc). The linear module **roberta.encoder.layer.6.attention.self.query** falls back to fp32 to meet the 1% relative accuracy loss. #### Test result | |INT8|FP32| |---|:---:|:---:| | **Accuracy (eval-f1)** |0.8843|0.8928| | **Model size (MB)** |180|422| #### Load with Intel® Neural Compressor: ```python from optimum.intel.neural_compressor import IncQuantizedModelForSequenceClassification model_id = "Intel/camembert-base-mrpc-int8-dynamic" int8_model = IncQuantizedModelForSequenceClassification.from_pretrained(model_id) ``` ### ONNX This is an INT8 ONNX model quantized with [Intel® Neural Compressor](https://github.com/intel/neural-compressor). The original fp32 model comes from the fine-tuned model [camembert-base-mrpc](https://huggingface.co/Intel/camembert-base-mrpc). #### Test result | |INT8|FP32| |---|:---:|:---:| | **Accuracy (eval-f1)** |0.8847|0.8928| | **Model size (MB)** |115|423| #### Load ONNX model: ```python from optimum.onnxruntime import ORTModelForSequenceClassification model = ORTModelForSequenceClassification.from_pretrained('Intel/camembert-base-mrpc-int8-dynamic') ```