musashihinck commited on
Commit
3eaf39c
·
1 Parent(s): 6e532d5

Adding usage and preprocessing script

Browse files
Files changed (3) hide show
  1. README.md +42 -1
  2. processing_llavagemma.py +138 -0
  3. usage.py +38 -0
README.md CHANGED
@@ -25,7 +25,48 @@ This model has not been assessed for harm or biases, and should not be used for
25
 
26
  ## How to Get Started with the Model
27
 
28
- Using the LLaVA-Gemma models currently requires a custom fork of the [`LLaVA`](https://github.com/haotian-liu/LLaVA) library. _We will release converted checkpoints compatible with the HuggingFace implementation of LLaVA shortly._
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
 
31
 
 
25
 
26
  ## How to Get Started with the Model
27
 
28
+ Currently using `llava-gemma` requires a [modified preprocessor](/processing_llavagemma.py).
29
+
30
+ For example usage, see [`usage.py`](/usage.py) or the following code block:
31
+
32
+
33
+ ```python
34
+ import requests
35
+ from PIL import Image
36
+ from transformers import (
37
+ LlavaForConditionalGeneration,
38
+ AutoTokenizer,
39
+ CLIPImageProcessor
40
+ )
41
+ from processing_llavagemma import LlavaGemmaProcessor # This is in this repo
42
+
43
+ checkpoint = "Intel/llava-gemma-2b"
44
+
45
+ # Load model
46
+ model = LlavaForConditionalGeneration.from_pretrained(checkpoint)
47
+ processor = LlavaGemmaProcessor(
48
+ tokenizer=AutoTokenizer.from_pretrained(checkpoint),
49
+ image_processor=CLIPImageProcessor.from_pretrained(checkpoint)
50
+ )
51
+
52
+ # Prepare inputs
53
+ # Use gemma chat template
54
+ prompt = processor.tokenizer.apply_chat_template(
55
+ [{'role': 'user', 'content': "What's the content of the image?<image>"}],
56
+ tokenize=False,
57
+ add_generation_prompt=True
58
+ )
59
+ url = "https://www.ilankelman.org/stopsigns/australia.jpg"
60
+ image = Image.open(requests.get(url, stream=True).raw)
61
+ inputs = processor(text=prompt, images=image, return_tensors="pt")
62
+ inputs = {k: v.to('cuda') for k, v in inputs.items()}
63
+
64
+ # Generate
65
+ generate_ids = model.generate(**inputs, max_length=30)
66
+ output = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
67
+ print(output)
68
+
69
+ ```
70
 
71
 
72
 
processing_llavagemma.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """
16
+ Processor class for Llava.
17
+ Modified to include support for Gemma tokenizer.
18
+ """
19
+
20
+
21
+ from typing import List, Optional, Union
22
+
23
+ from transformers.feature_extraction_utils import BatchFeature
24
+ from transformers.image_utils import ImageInput
25
+ from transformers.processing_utils import ProcessorMixin
26
+ from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
27
+ from transformers.utils import TensorType
28
+
29
+
30
+ class LlavaGemmaProcessor(ProcessorMixin):
31
+ r"""
32
+ Constructs a Llava processor which wraps a Llava image processor and a Llava tokenizer into a single processor.
33
+
34
+ [`LlavaProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`LlamaTokenizerFast`]. See the
35
+ [`~LlavaProcessor.__call__`] and [`~LlavaProcessor.decode`] for more information.
36
+
37
+ Args:
38
+ image_processor ([`CLIPImageProcessor`], *optional*):
39
+ The image processor is a required input.
40
+ tokenizer ([`LlamaTokenizerFast`], *optional*):
41
+ The tokenizer is a required input.
42
+ """
43
+
44
+ attributes = ["image_processor", "tokenizer"]
45
+ image_processor_class = "CLIPImageProcessor"
46
+ tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast",
47
+ "GemmaTokenizer", "GemmaTokenizerFast")
48
+
49
+ def __init__(self, image_processor=None, tokenizer=None):
50
+ super().__init__(image_processor, tokenizer)
51
+
52
+ def __call__(
53
+ self,
54
+ text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
55
+ images: ImageInput = None,
56
+ padding: Union[bool, str, PaddingStrategy] = False,
57
+ truncation: Union[bool, str, TruncationStrategy] = None,
58
+ max_length=None,
59
+ return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
60
+ ) -> BatchFeature:
61
+ """
62
+ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
63
+ and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
64
+ the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
65
+ CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
66
+ of the above two methods for more information.
67
+
68
+ Args:
69
+ text (`str`, `List[str]`, `List[List[str]]`):
70
+ The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
71
+ (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
72
+ `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
73
+ images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
74
+ The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
75
+ tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
76
+ number of channels, H and W are image height and width.
77
+ padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
78
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding
79
+ index) among:
80
+ - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
81
+ sequence if provided).
82
+ - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
83
+ acceptable input length for the model if that argument is not provided.
84
+ - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
85
+ lengths).
86
+ max_length (`int`, *optional*):
87
+ Maximum length of the returned list and optionally padding length (see above).
88
+ truncation (`bool`, *optional*):
89
+ Activates truncation to cut input sequences longer than `max_length` to `max_length`.
90
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
91
+ If set, will return tensors of a particular framework. Acceptable values are:
92
+
93
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
94
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
95
+ - `'np'`: Return NumPy `np.ndarray` objects.
96
+ - `'jax'`: Return JAX `jnp.ndarray` objects.
97
+
98
+ Returns:
99
+ [`BatchFeature`]: A [`BatchFeature`] with the following fields:
100
+
101
+ - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
102
+ - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
103
+ `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
104
+ `None`).
105
+ - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
106
+ """
107
+ if images is not None:
108
+ pixel_values = self.image_processor(images, return_tensors=return_tensors)["pixel_values"]
109
+ else:
110
+ pixel_values = None
111
+ text_inputs = self.tokenizer(
112
+ text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length
113
+ )
114
+
115
+ return BatchFeature(data={**text_inputs, "pixel_values": pixel_values})
116
+
117
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
118
+ def batch_decode(self, *args, **kwargs):
119
+ """
120
+ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
121
+ refer to the docstring of this method for more information.
122
+ """
123
+ return self.tokenizer.batch_decode(*args, **kwargs)
124
+
125
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
126
+ def decode(self, *args, **kwargs):
127
+ """
128
+ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
129
+ the docstring of this method for more information.
130
+ """
131
+ return self.tokenizer.decode(*args, **kwargs)
132
+
133
+ @property
134
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
135
+ def model_input_names(self):
136
+ tokenizer_input_names = self.tokenizer.model_input_names
137
+ image_processor_input_names = self.image_processor.model_input_names
138
+ return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
usage.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import transformers
2
+
3
+ print(transformers.__version__)
4
+
5
+ import requests
6
+ from PIL import Image
7
+ from transformers import (
8
+ LlavaForConditionalGeneration,
9
+ AutoTokenizer,
10
+ CLIPImageProcessor
11
+ )
12
+ from processing_llavagemma import LlavaGemmaProcessor
13
+
14
+ checkpoint = "Intel/llava-gemma-2b"
15
+
16
+ model = LlavaForConditionalGeneration.from_pretrained(checkpoint)
17
+ processor = LlavaGemmaProcessor(
18
+ tokenizer=AutoTokenizer.from_pretrained(checkpoint),
19
+ image_processor=CLIPImageProcessor.from_pretrained(checkpoint)
20
+ )
21
+
22
+ model.to('cuda')
23
+
24
+
25
+ prompt = processor.tokenizer.apply_chat_template(
26
+ [{'role': 'user', 'content': "What's the content of the image?<image>"}],
27
+ tokenize=False,
28
+ add_generation_prompt=True
29
+ )
30
+ url = "https://www.ilankelman.org/stopsigns/australia.jpg"
31
+ image = Image.open(requests.get(url, stream=True).raw)
32
+ inputs = processor(text=prompt, images=image, return_tensors="pt")
33
+ inputs = {k: v.to('cuda') for k, v in inputs.items()}
34
+
35
+ # Generate
36
+ generate_ids = model.generate(**inputs, max_length=30)
37
+ output = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
38
+ print(output)