--- language: - en license: mit tags: - text-classfication - int8 - Intel® Neural Compressor - neural-compressor - PostTrainingStatic datasets: - glue metrics: - f1 model-index: - name: roberta-base-mrpc-int8-static results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: F1 type: f1 value: 0.924693520140105 --- # INT8 roberta-base-mrpc ## Post-training static quantization ### PyTorch This is an INT8 PyTorch model quantized with [Intel® Neural Compressor](https://github.com/intel/neural-compressor). The original fp32 model comes from the fine-tuned model [roberta-base-mrpc](https://huggingface.co/Intel/roberta-base-mrpc). The calibration dataloader is the train dataloader. The default calibration sampling size 100 isn't divisible exactly by batch size 8, so the real sampling size is 104. #### Test result | |INT8|FP32| |---|:---:|:---:| | **Accuracy (eval-f1)** |0.9177|0.9138| | **Model size (MB)** |127|499| #### Load with Intel® Neural Compressor: ```python from optimum.intel.neural_compressor import IncQuantizedModelForSequenceClassification model_id = "Intel/roberta-base-mrpc-int8-static" int8_model = IncQuantizedModelForSequenceClassification.from_pretrained(model_id) ``` ### ONNX This is an INT8 ONNX model quantized with [Intel® Neural Compressor](https://github.com/intel/neural-compressor). The original fp32 model comes from the fine-tuned model [roberta-base-mrpc](https://huggingface.co/Intel/roberta-base-mrpc). The calibration dataloader is the eval dataloader. The calibration sampling size is 100. #### Test result | |INT8|FP32| |---|:---:|:---:| | **Accuracy (eval-f1)** |0.9100|0.9138| | **Model size (MB)** |294|476| #### Load ONNX model: ```python from optimum.onnxruntime import ORTModelForSequenceClassification model = ORTModelForSequenceClassification.from_pretrained('Intel/roberta-base-mrpc-int8-static') ```