MengniWang commited on
Commit
67f2594
·
1 Parent(s): 0b27f4e
Files changed (1) hide show
  1. README.md +40 -0
README.md CHANGED
@@ -48,6 +48,46 @@ Download the model by cloning the repository:
48
  git clone https://huggingface.co/Intel/whisper-large-int8-dynamic
49
  ```
50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
  ## Metrics (Model Performance):
52
  | Model | Model Size (GB) | wer |
53
  |---|:---:|:---:|
 
48
  git clone https://huggingface.co/Intel/whisper-large-int8-dynamic
49
  ```
50
 
51
+ Evaluate the model with below code:
52
+ ```python
53
+ import os
54
+ from evaluate import load
55
+ from datasets import load_dataset
56
+ from transformers import WhisperForConditionalGeneration, WhisperProcessor, AutoConfig
57
+
58
+ model_name = 'openai/whisper-large'
59
+ model_path = 'whisper-large-int8-dynamic'
60
+ processor = WhisperProcessor.from_pretrained(model_name)
61
+ model = WhisperForConditionalGeneration.from_pretrained(model_name)
62
+ config = AutoConfig.from_pretrained(model_name)
63
+ wer = load("wer")
64
+ librispeech_test_clean = load_dataset("librispeech_asr", "clean", split="test")
65
+
66
+ from optimum.onnxruntime import ORTModelForSpeechSeq2Seq
67
+ from transformers import PretrainedConfig
68
+ model_config = PretrainedConfig.from_pretrained(model_name)
69
+ predictions = []
70
+ references = []
71
+ sessions = ORTModelForSpeechSeq2Seq.load_model(
72
+ os.path.join(model_path, 'encoder_model.onnx'),
73
+ os.path.join(model_path, 'decoder_model.onnx'),
74
+ os.path.join(model_path, 'decoder_with_past_model.onnx'))
75
+ model = ORTModelForSpeechSeq2Seq(sessions[0], sessions[1], model_config, model_path, sessions[2])
76
+ for idx, batch in enumerate(librispeech_test_clean):
77
+ audio = batch["audio"]
78
+ input_features = processor(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features
79
+ reference = processor.tokenizer._normalize(batch['text'])
80
+ references.append(reference)
81
+ predicted_ids = model.generate(input_features)[0]
82
+ transcription = processor.decode(predicted_ids)
83
+ prediction = processor.tokenizer._normalize(transcription)
84
+ predictions.append(prediction)
85
+ wer_result = wer.compute(references=references, predictions=predictions)
86
+ print(f"Result wer: {wer_result * 100}")
87
+ accuracy = 1 - wer_result
88
+ print("Accuracy: %.5f" % accuracy)
89
+ ```
90
+
91
  ## Metrics (Model Performance):
92
  | Model | Model Size (GB) | wer |
93
  |---|:---:|:---:|