Upload configuration_olmo.py with huggingface_hub
Browse files- configuration_olmo.py +52 -0
configuration_olmo.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
OLMo configuration
|
3 |
+
"""
|
4 |
+
|
5 |
+
from transformers import AutoConfig, PretrainedConfig
|
6 |
+
from transformers.utils import logging
|
7 |
+
|
8 |
+
from .config import ModelConfig
|
9 |
+
from .aliases import PathOrStr
|
10 |
+
from .beam_search import Sampler
|
11 |
+
from .exceptions import OLMoError
|
12 |
+
from .initialization import ModuleType
|
13 |
+
from .optim import Optimizer
|
14 |
+
from .util import StrEnum
|
15 |
+
from .safetensors_util import STKey
|
16 |
+
from .torch_util import seed_all
|
17 |
+
|
18 |
+
logger = logging.get_logger(__name__)
|
19 |
+
|
20 |
+
|
21 |
+
class OLMoConfig(PretrainedConfig):
|
22 |
+
model_type = "olmo"
|
23 |
+
keys_to_ignore_at_inference = ["past_key_values"] # TODO: confirm
|
24 |
+
|
25 |
+
def __init__(self, use_cache: bool = False, **kwargs):
|
26 |
+
model_config = ModelConfig()
|
27 |
+
all_kwargs = model_config.asdict()
|
28 |
+
all_kwargs.update(kwargs)
|
29 |
+
all_kwargs.update({"use_cache": use_cache})
|
30 |
+
all_kwargs.update(
|
31 |
+
{
|
32 |
+
"architectures": all_kwargs.get("architectures", ["OLMoModelForCausalLM"])
|
33 |
+
or ["OLMoModelForCausalLM"]
|
34 |
+
}
|
35 |
+
)
|
36 |
+
super().__init__(**all_kwargs)
|
37 |
+
|
38 |
+
@property
|
39 |
+
def num_attention_heads(self):
|
40 |
+
return self.n_heads
|
41 |
+
|
42 |
+
@property
|
43 |
+
def num_hidden_layers(self):
|
44 |
+
return self.n_layers
|
45 |
+
|
46 |
+
@property
|
47 |
+
def hidden_size(self):
|
48 |
+
return self.d_model
|
49 |
+
|
50 |
+
|
51 |
+
# Register the config class so that it is available for transformer pipelines, auto-loading etc.
|
52 |
+
# AutoConfig.register("olmo", OLMoConfig)
|